# Data Structures and Algorithms <br> University of New Brunswick <br> Fredericton, New Brunswick, Canada 

Spring 2023

| Instructor: | Syed Eqbal Alam | Time: | T Th 1:00pm - 2:20pm |
| :--- | :--- | :--- | :--- |
| Email: | syed.eqbal@unb.ca | Place: | GWC 127, Gillin Hallway |

## Proof Techniques: Proof by Induction

Proof by Induction is a proof technique. In this proof technique, we check that the statement holds for a start value, called Base case. Then we assume that the hypothesis is true for $n=k$, called Induction step. Finally, using the Induction step, we prove that the statement holds for $n=k+1$.

Example 0.1. Prove that $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$.
Solution: As the summation $\sum_{i=1}^{n} i$ starts from $i=1$; thus, in the base case we will check whether the statement $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$ is true for $n=1$ or not. Thus, we write the base case as:

Base case: For $n=1, \sum_{i=1}^{n} i=1$ and $\frac{n(n+1)}{2}=\frac{1(1+1)}{2}=\frac{1 \times 2}{2}=1$. Thus, the statement $\sum_{i=1}^{n} i=$ $\frac{n(n+1)}{2}$ is true for the base case.

Induction step: Now, we assume that the hypothesis is true for $n=k$. That is, $\sum_{i=1}^{k} i=\frac{k(k+1)}{2}$ holds.

Finally, we need to prove that the hypothesis is true for $n=k+1$. That is, we prove that $\sum_{i=1}^{k+1} i=$ $\frac{(k+1)(k+2)}{2}$.

Let u try to prove it now.
We write as

$$
\begin{equation*}
\sum_{i=1}^{k+1} i=\sum_{i=1}^{k} i+(k+1) . \tag{1}
\end{equation*}
$$

From the Induction step, we have $\sum_{i=1}^{k} i=\frac{k(k+1)}{2}$.
Replacing the value of $\sum_{i=1}^{k} i$ in (1), we obtain

$$
\begin{align*}
\sum_{i=1}^{k+1} i & =\frac{k(k+1)}{2}+(k+1)  \tag{2}\\
& =\frac{k(k+1)+2(k+1)}{2} \\
& =\frac{(k+1)(k+2)}{2}
\end{align*}
$$

That is what we wanted to prove. Hence, we conclude the proof.
Example 0.2. Prove that $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$.
Solution: Base case: For $n=1, \sum_{i=1}^{n} i^{2}=1^{2}=1$ and $\frac{n(n+1)(2 n+1)}{6}=\frac{1(1+1)(2 \times 1+1)}{6}=\frac{1 \times 2 \times 3}{6}=1$.
Thus, the statement $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$ is true for the base case, $n=1$.
Induction step: We assume that the hypothesis is true for $n=k$. That is, $\sum_{i=1}^{k} i^{2}=\frac{k(k+1)(2 k+1)}{6}$ is true.

We need to prove that the hypothesis is true for $n=k+1$. That is, we prove that $\sum_{i=1}^{k+1} i^{2}=$ $\frac{(k+1)(k+2)(2 k+3)}{6}$.

We reformulate as

$$
\begin{equation*}
\sum_{i=1}^{k+1} i^{2}=\sum_{i=1}^{k} i^{2}+(k+1)^{2} \tag{3}
\end{equation*}
$$

From the Induction step, we have $\sum_{i=1}^{k} i^{2}=\frac{k(k+1)(2 k+1)}{6}$. Replacing the value of $\sum_{i=1}^{k} i^{2}$ in (3), we obtain

$$
\begin{align*}
\sum_{i=1}^{k+1} i^{2} & =\frac{k(k+1)(2 k+1)}{6}+(k+1)^{2}  \tag{4}\\
& =\frac{(k+1)(k(2 k+1)+6(k+1))}{6} \\
& =\frac{(k+1)\left(2 k^{2}+7 k+6\right)}{6} \\
& =\frac{(k+1)\left(2 k^{2}+3 k+4 k+6\right)}{6} \\
& =\frac{(k+1)(k(2 k+3)+2(2 k+3))}{6} \\
& =\frac{(k+1)(k+2)(2 k+3)}{6}
\end{align*}
$$

That is what we wanted to prove. Hence, we conclude the proof.
Try these questions:
Question 0.3. Prove that $\sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}$.
Question 0.4. Prove that $\sum_{i=1}^{n}(2 i-1)=n^{2}$.

