# Quiz 1 Set A

CS 2383 Data Structures and Algorithms Faculty of Computer Science University of New Brunswick Fredericton, New Brunswick, Canada

Spring 2023

| Student's Name:         |       |                      |
|-------------------------|-------|----------------------|
| University Id:          |       |                      |
| Date: February 14, 2023 | Time: | $12{:}00pm-1{:}00pm$ |

### Total points: 20

Each question is of 1 point weightage. Logarithms (log) used in the questions have base 2. Useful formulas:

- (i) For a natural number n, we have  $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ .
- (ii)  $(a+b)^3 = a^3 + b^3 + 3a^2b + 3ab^2$ .

**Question 1** The functions f(n) with input size n and the types of asymptotic growth is given in Table 1. Tick mark the correct boxes.

| f(n)            | Constant | Logarithmic | Linear | n log n | Polynomial | Exponential |
|-----------------|----------|-------------|--------|---------|------------|-------------|
| 10              |          |             |        |         |            |             |
| 5n + 10         |          |             |        |         |            |             |
| $3n^3$          |          |             |        |         |            |             |
| $4n^2$          |          |             |        |         |            |             |
| $5\log n + 15$  |          |             |        |         |            |             |
| $2^n + 5$       |          |             |        |         |            |             |
| $2n\log n + 11$ |          |             |        |         |            |             |

Question 2 Arrange the following functions in increasing order of asymptotic growth rate.

(*i*)  $2^5$ 

(*ii*) n + 15

(iii)  $n \log n + 3$ 

## Answer:

Question 3 Arrange the following functions in increasing order of asymptotic growth rate.

(i)  $n^2 + 2^5$ (ii)  $\log n + 2$ (iii)  $n^2 \log n + 3$ Answer:

Question 4 Arrange the following functions in increasing order of asymptotic growth rate.

- (*i*)  $n^3 + 1$
- (*ii*)  $n \log n + 2$
- (*iii*)  $2^n + 1$

```
Answer:
```

Question 5 For  $n \ge 1$ , if  $f(n) = 3n^2 + 2n \log(n)$ . Then f(n) is O(--).

Question 6 For  $n \ge 1$ , if  $f(n) = n^3 + n^3 \log n$ . Then f(n) is O(--).

Question 7 If  $f(n) = (n+1)^3$ . Then f(n) is O(--).

Question 8 If  $f(n) = \sum_{i=1}^{n} j$ . Then f(n) is O(--).

**Question 9** What is the upper bound of the time complexity of Algorithm 1 —————.

Algorithm 1: The product of elements in the array *arrayA*.

 $1 \quad \text{Input: Array of length } n, arrayA; \\ 2 \quad \text{Initialization: } prodVal = 1; \\ 3 \quad \text{Output: } prodVal; \\ 4 \quad \text{for } (i = 0; i < n; i + +) \\ 5 \quad prodVal = prodVal * arrayA[i]; \\ 6 \quad \text{return } prodVal; \\$ 

**Question 10** Let f(n) denote the total number of basic/primitive operations required to complete the task for the given input size n in Algorithm 1. Then, what is the approximate value of f(n)?

Answer: f(n) =

| 1        | Input: val;                |
|----------|----------------------------|
| <b>2</b> | Initialization: $val = 1;$ |
| 3        | Output: Even, Odd;         |
| <b>4</b> | if val $\% 2 = 0$ then     |
| <b>5</b> | print Even;                |
| 6        | end                        |
| 7        | else                       |
| 8        | print Odd;                 |
| 9        | end                        |

**Question 11** Let f(n) denote the total number of basic/primitive operations required to complete the task for the given input size n in Algorithm 2. Then, what is the approximate value of f(n)? And what is the time complexity of Algorithm 2.

Answer: f(n) =f(n) is O(----).

**Question 12** For  $n \ge 2$ , if  $f(n) = 5n \log n + 2$ . Which of the following is the correct option.

- (i) f(n) is  $\Omega(n)$
- (ii) f(n) is  $\Omega(n^2)$
- (iii) f(n) is  $\Omega(n^2 \log n)$ .

Question 13 For  $n \ge 1$ , if  $f(n) = 3n^2 \log n + 2n \log n$ . Then f(n) is  $\Theta(---)$ .

**Question 14** For  $n \ge 2$ , if  $f(n) = \log n + 12$ . Choose all the correct options:

- (i) f(n) is O(n)
- (ii) f(n) is  $O(\log n)$
- (iii) f(n) is  $O(n \log n)$
- (*iv*) f(n) is O(1).

**Question 15** Algorithm 3 consists of two blocks, Block 1 and Block 2; the time complexity of Block 1 is O(n), and the time complexity of Block 2 is  $O(n \log n)$ . What is the time complexity of Algorithm 3? Choose the correct option.

- (i) O(n)
- (ii)  $O(\log n)$
- (iii)  $O(n \log n)$

(*iv*) O(1).

| Algorithm 3:        |   |  |  |
|---------------------|---|--|--|
| 1 if condition then | 1 |  |  |
| 2 Block 1;          |   |  |  |
| 3 end               |   |  |  |
| 4 else              |   |  |  |
| 5 Block 2;          |   |  |  |
| 6 end               |   |  |  |

**Question 16** In Algorithm 4, Block 1 and Block 2 have the same time complexity O(1). What is the time complexity of the Algorithm? Choose the correct option.

(*i*) O(1)

(ii)  $O(\log n)$ 

(iii) O(n)

(*iv*)  $O(n^2)$ .

## Algorithm 4:

1 for  $(i = 1; i \le n; i + +)$  do 2 Block 1; 3 for  $(j = 1; j \le i; j + +)$  do 4 Block 2; 5 end 6 end

**Question 17** In Algorithm 5, Block 1 and Block 2 have the same time complexity O(1). What is the time complexity of the Algorithm? Choose the correct option.

(*i*) O(1)

(ii)  $O(\log n)$ 

- (iii) O(n)
- (*iv*)  $O(n^2)$ .

## Algorithm 5:

| 1        | for $(i = 1; i \le n; i + +)$ do |
|----------|----------------------------------|
| <b>2</b> | Block 1;                         |
| 3        | for $(j = 1; j \le n; j + +)$ do |
| 4        | Block 2;                         |
| <b>5</b> | $\mathbf{end}$                   |
| 6        | end                              |

**Question 18** In Algorithm 6, Block 1 has O(1) time complexity. What is the time complexity of the Algorithm?

(*i*) O(1)

- (ii)  $O(\log n)$
- (iii)  $O(n \log n)$
- (*iv*)  $O(n^2)$ .

## Algorithm 6:

for (i = 1; i <= n; i + +) do</li>
for (j = 1; j <= i; j = j \* 2) do</li>
Block 1;
end
end

**Question 19** Figure 1 illustrates the plot of three functions. Which of the following options best describes the relationship among them? Choose all the correct options.

- (i) f(n) is  $\Theta(g(n))$
- (ii) f(n) is  $\Theta(n \log n)$
- (iii) f(n) is  $O(n \log n)$
- (iv) f(n) is  $\Omega(n \log n)$



Figure 1

**Question 20** Figure 2 illustrates the plot of two functions f(n) and g(n). Which of the following options best describes the relationship between them?

(i) f(n) is  $\Theta(g(n))$ 

(ii) f(n) is  $\Omega(g(n))$ 

(iii) f(n) is O(g(n))



Figure 2

Blank page.