Quiz 1 Set A

CS 2383 Data Structures and Algorithms
Faculty of Computer Science
University of New Brunswick
Fredericton, New Brunswick, Canada
Spring 2023

Student's Name:
 University Id:
 Date: February 14, 2023
 Time: 12:00pm - 1:00pm

Total points: 20

Each question is of 1 point weightage. Logarithms (\log) used in the questions have base 2. Useful formulas:
(i) For a natural number n, we have $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$.
(ii) $(a+b)^{3}=a^{3}+b^{3}+3 a^{2} b+3 a b^{2}$.

Question 1 The functions $f(n)$ with input size n and the types of asymptotic growth is given in Table 1. Tick mark the correct boxes.

$f(n)$	Constant	Logarithmic	Linear	$n \log n$	Polynomial	Exponential
10						
$5 n+10$						
$3 n^{3}$						
$4 n^{2}$						
$5 \log n+15$						
$2^{n}+5$						
$2 n \log n+11$						

Question 2 Arrange the following functions in increasing order of asymptotic growth rate.
(i) 2^{5}
(ii) $n+15$
(iii) $n \log n+3$

Answer:

Question 3 Arrange the following functions in increasing order of asymptotic growth rate.
(i) $n^{2}+2^{5}$
(ii) $\log n+2$
(iii) $n^{2} \log n+3$

Answer:

Question 4 Arrange the following functions in increasing order of asymptotic growth rate.
(i) $n^{3}+1$
(ii) $n \log n+2$
(iii) $2^{n}+1$

Answer:

Question 5 For $n \geq 1$, if $f(n)=3 n^{2}+2 n \log (n)$. Then $f(n)$ is $O(---)$.
Question 6 For $n \geq 1$, if $f(n)=n^{3}+n^{3} \log n$. Then $f(n)$ is $O(---)$.
Question 7 If $f(n)=(n+1)^{3}$. Then $f(n)$ is $O(---)$.
Question 8 If $f(n)=\sum_{j=1}^{n} j$. Then $f(n)$ is $O(---)$.
Question 9 What is the upper bound of the time complexity of Algorithm $1 \ldots \ldots-\ldots$.

```
Algorithm 1: The product of elements in the array arrayA.
    Input: Array of length \(n\), array \(A\);
    Initialization: \(\operatorname{prodVal}=1\);
    Output: prodVal;
    for \((i=0 ; i<n ; i++)\)
        prodVal \(=\) prodVal \(* \operatorname{array} A[i] ;\)
    return prodVal;
```

Question 10 Let $f(n)$ denote the total number of basic/primitive operations required to complete the task for the given input size n in Algorithm 1.Then, what is the approximate value of $f(n)$?

Answer:

$f(n)=$

```
Algorithm 2: To find whether an input value (integer) is even or odd.
    Input: val;
    Initialization: val \(=1\);
    Output: Even, Odd;
    if val \% 2 = 0 then
        print Even;
    end
    else
        print Odd;
    end
```

Question 11 Let $f(n)$ denote the total number of basic/primitive operations required to complete the task for the given input size n in Algorithm 2. Then, what is the approximate value of $f(n)$? And what is the time complexity of Algorithm 2.

```
Answer:
\(f(n)=\)
\(f(n)\) is \(O(-----)\).
```

Question 12 For $n \geq 2$, if $f(n)=5 n \log n+2$. Which of the following is the correct option.
(i) $f(n)$ is $\Omega(n)$
(ii) $f(n)$ is $\Omega\left(n^{2}\right)$
(iii) $f(n)$ is $\Omega\left(n^{2} \log n\right)$.

Question 13 For $n \geq 1$, if $f(n)=3 n^{2} \log n+2 n \log n$. Then $f(n)$ is $\Theta(-----)$.

Question 14 For $n \geq 2$, if $f(n)=\log n+12$. Choose all the correct options:
(i) $f(n)$ is $O(n)$
(ii) $f(n)$ is $O(\log n)$
(iii) $f(n)$ is $O(n \log n)$
(iv) $f(n)$ is $O(1)$.

Question 15 Algorithm 3 consists of two blocks, Block 1 and Block 2; the time complexity of Block 1 is $O(n)$, and the time complexity of Block 2 is $O(n \log n)$. What is the time complexity of Algorithm 3? Choose the correct option.
(i) $O(n)$
(ii) $O(\log n)$
(iii) $O(n \log n)$
(iv) $O(1)$.

```
Algorithm 3:
    if condition then
        Block 1;
    end
    else
        Block 2;
    end
```

Question 16 In Algorithm 4, Block 1 and Block 2 have the same time complexity $O(1)$. What is the time complexity of the Algorithm? Choose the correct option.
(i) $O(1)$
(ii) $O(\log n)$
(iii) $O(n)$
(iv) $O\left(n^{2}\right)$.

```
Algorithm 4:
    for \((i=1 ; i<=n ; i++)\) do
        Block 1;
        for \((j=1 ; j<=i ; j++)\) do
            Block 2;
        end
    end
```

Question 17 In Algorithm 5, Block 1 and Block 2 have the same time complexity $O(1)$. What is the time complexity of the Algorithm? Choose the correct option.
(i) $O(1)$
(ii) $O(\log n)$
(iii) $O(n)$
(iv) $O\left(n^{2}\right)$.

```
Algorithm 5:
    for (i=1;i<= n;i++) do
        Block 1;
        for ( j=1; j<= n; j++) do
            Block 2;
        end
    end
```

Question 18 In Algorithm 6, Block 1 has $O(1)$ time complexity. What is the time complexity of the Algorithm?
(i) $O(1)$
(ii) $O(\log n)$
(iii) $O(n \log n)$
(iv) $O\left(n^{2}\right)$.

```
Algorithm 6:
    for \((i=1 ; i<=n ; i++)\) do
        for \((j=1 ; j<=i ; j=j * 2)\) do
            Block 1;
        end
    end
```

Question 19 Figure 1 illustrates the plot of three functions. Which of the following options best describes the relationship among them? Choose all the correct options.
(i) $f(n)$ is $\Theta(g(n))$
(ii) $f(n)$ is $\Theta(n \log n)$
(iii) $f(n)$ is $O(n \log n)$
(iv) $f(n)$ is $\Omega(n \log n)$

Figure 1

Question 20 Figure 2 illustrates the plot of two functions $f(n)$ and $g(n)$. Which of the following options best describes the relationship between them?
(i) $f(n)$ is $\Theta(g(n))$
(ii) $f(n)$ is $\Omega(g(n))$
(iii) $f(n)$ is $O(g(n))$

Figure 2

Blank page.

