
CS 2383 Data Structures and Algorithms
Faculty of Computer Science
University of New Brunswick

Fredericton, New Brunswick, Canada

Spring 2023

Instructor: Syed Eqbal Alam Time: T Th 1:00pm – 2:20pm
Email: syed.eqbal@unb.ca Place: GWC 127, Gillin Hallway

Sorting Algorithms

1 Introduction

■ Sorting algorithms are used to arrange comparable data types in increasing or decreasing order.

For example, the Name of your friends in your contact list. It should be sorted in alphabetic order;
otherwise, it will be difficult to access the names (assuming no search facility is given).

■ Suppose you are given an array of characters {A,B,D,M,E, S} to sort. The sorted array will be
{A,B,D,E,M, S}.

■ Suppose you are given an array of integers {11, 2, 33, 54, 108, 17} to sort in the increasing (ascending)
order. The sorted array will be {2, 11, 17, 33, 54, 108}.
Similarly, if you are asked to sort in decreasing (descending) order, the sorted array will be {108, 54, 33, 17, 11, 2}.

There are many sorting algorithms, such as:

(i) Bubble sort

(ii) Selection sort

(iii) Insertion sort

(iv) Merge sort

(v) Quick sort

(vi) Heap sort

Each of these algorithms has advantages and disadvantages. For example, some will have better time
complexity, and some will be easier to implement and suitable for a small data set.

2 Bubble sort

■ Suppose that we are sorting an integer array in the increasing order. Bubble sort works as follows:

⋄ If there is only one element in the array, then nothing to do; return the array.

If there are two or more elements (say 4 elements) in the array to be sorted, then the following steps will
be followed.

page 1 of 20

mailto:syed.eqbal@unb.ca


CS 2383 February 21, 2023

(Step 1) The first two elements of the array are compared. If the 1st element is greater than the 2nd element,
then swap the elements. If no, then go to Step 2.

(Step 2) Compare 2nd and 3rd elements of the array. If the 2nd element is greater than the 3rd element, then
swap the elements. If no, then go to Step 3.

(Step 3) Compare 3rd and 4th elements of the array. If the 3rd element is greater than the 4th element, then
swap the elements. Now the biggest element is moved to the last of the array.

Now repeat Step 1, and compare 1st element and 2nd element of the array. If the 1st element is
greater than the 2nd element, then swap the elements. If no then go to Step 2 and compare 2nd and
3rd elements. If the 2nd element is greater than the 3rd element, then swap the elements. Now the
second bigger element is at its correct place. After this we again start Step 1 and compare 1st and 2nd
elements of the array, and swap if 2nd element is greater than the 1st element. The array is sorted
now.

Algorithm 1: Bubble sort.

1 Input: Array of length n, arrayA;
2 Initialization: i = 0, j = 0;
3 Output: arrayA;
4 for i = 0; i < n; i++ do
5 for j = 0; j < n− i− 1; j ++ do
6 if arrayA[j] > arrayA[j + 1] then
7 //Swap arrayA[j] and arrayA[j + 1]
8 int temp = arrayA[j];
9 arrayA[j] = arrayA[j+1];

10 arrayA[j+1] = temp;

11 end

12 end

13 end

The Bubble sort algorithm is quite old, and it is easier to implement. However, it is not suitable for very
large datasets.

■ The Bubble sort has time complexity O(n2) for a given input size n.

page 2 of 20



CS 2383 February 21, 2023

page 3 of 20



CS 2383 February 21, 2023

page 4 of 20



CS 2383 February 21, 2023

Figure 1: Bubble sort

page 5 of 20



CS 2383 February 21, 2023

Try to solve these questions:

Question 2.1. Sort arrayA = {11, 11, 22, 3, 6, 9, 1} through the Bubble sort algorithm. Write all the
iterations and steps (compare and swap) in each iteration.

Question 2.2. Sort arrayB = {22, 11, 11, 9, 6, 3, 1} through Bubble sort algorithm. Check how many
iterations and steps (compare and swap) are required to sort the array.

Question 2.3. Sort arrayC = {1, 3, 6, 9, 11, 11, 22} through the Bubble sort algorithm. Check how many
iterations and steps (compare and swap) are required to sort the array? Additionally, compare the number
of operations required to sort the arrays in Question 2.1, Question 2.2, and Question 2.3.

Question 2.4. Sort arrayA = {A, E, M, V, B, D, K} through Bubble sort algorithm. Write all the iterations
and steps (compare and swap) in each iteration.

Question 2.5. Implement Bubble sort algorithm to sort arrayA = {ABC, AEC, MAB, BVV, AAB, D,
FED, NB,CA}. Print all the iterations and steps (compare and swap) in each iteration.

3 Insertion sort

■ An element is put in the correct place compared to the elements before it.

Steps to follow for Insertion sort:

(i) The first element is sorted trivially.

(ii) If there are two or more elements in the array, then compare the second element A[1] with the first
element A[0]. Assign A[1] to Key. If A[0] is greater than the Key, then move A[0] to the index 1 of
the array and put the Key (second element) at the index 0 (at the place of A[0]). If there are two
elements in the array, then the array is sorted now. If there are more elements in the array, then
move to the next element in the array and compare it with its previous elements, as described in the
following steps.

(iii) Compare the 3rd element A[2] with the 2nd element A[1] and then with the first element A[0]. Now,
Key = A[2]. If A[1] is greater than A[2], then move A[1] to the place of A[2]. Now, compare the Key
with the 1st element of the array A[0], if A[0] is greater than the Key, then move A[0] to index 1 and
place the key at index 0 (at the place of A[0]).

(iv) Repeat this process until you reach the last element of the array. Finally, you will get a sorted array.

page 6 of 20



CS 2383 February 21, 2023

page 7 of 20



CS 2383 February 21, 2023

page 8 of 20



CS 2383 February 21, 2023

Figure 2: Insertion sort

page 9 of 20



CS 2383 February 21, 2023

Algorithm 2: Insertion sort.

1 Input: Array of length n, arrayA;
2 Initialization: i = 1;
3 Output: Sorted array arrayA;
4 for i = 1; i < n; i++ do
5 Key = arrayA[i];
6 j = i− 1;
7 while j >= 0 && arrayA[j] > Key do
8 //Move the j’th index element, arrayA[j] to (j + 1)’th index of arrayA.
9 arrayA[j + 1] = arrayA[j];

10 j = j − 1;

11 end
12 arrayA[j + 1] = Key;

13 end

■ The Insertion sort has time complexity O(n2) for a given input size n.

■ Using the insertion sort, a sorted array such as A = {1, 2, 3, 4, 5} for increasing order will have time
complexity O(n).

■ A reverse sorted array such as A = {5, 4, 3, 2, 1} for increasing order will have time complexity O(n2).
This is the upper bound of time complexity for the Insertion sort.

4 Merge sort

■ It is a Divide and Conquer-based algorithm.

■ In the divide and conquer-based algorithms, a problem is split or divided into smaller problems or
sub-problems. Then the solutions to sub-problems are combined to form the solution to the bigger
problem.

The following steps are followed to perform merge sort.

(i) If there is just one element in the array, then return the array, nothing to sort.

(ii) If there are two or more than two elements in the array, then find out the total number of elements in
the array, n. Then calculate the mid value of the array length, mid = n/2.

(iii) Create two arrays, LeftArray and RightArray. Copy the elements from index 0 to mid−1 of arrayA
in the LeftArray and the elements from index mid to n− 1 of arrayA in the RightArray.

(iv) Now pass the LeftArray to the MergeSort method, calculate the mid value of the LeftArray length
and create two arrays, LeftArray and RightArray. Copy the elements from index 0 to mid − 1 of
arrayA in the LeftArray and the elements from index mid to n − 1 of arrayA in the RightArray.
As this is a recursive function call, this process repeats until all the arrays have one-one elements.

(v) Now, the comparison of elements and merging process will start from the last level, moving upward
(Left to Right).

(vi) Compare each element of the LeftArray and Rightarray and place elements at their correct locations
in the merged array.

■ Merge sort has time complexity O(n log n) for a given input size n.

page 10 of 20



CS 2383 February 21, 2023

page 11 of 20



CS 2383 February 21, 2023

page 12 of 20



CS 2383 February 21, 2023

page 13 of 20



CS 2383 February 21, 2023

Figure 3: Merge sort

page 14 of 20



CS 2383 February 21, 2023

The algorithm for merge sort is presented in Algorithm 3 .

Algorithm 3: Mergesort Algorithm.

1 Input: Array of length n, arrayA;
2 Initialization: i = 1;
3 Output: Sorted array arrayA;
4 MergeArrays(int [] LeftArray, int [] RightArray, int [] arrayA)):
5 n = arrayA.length;
6 n1 = LeftArray.length;
7 n2 = RightArray.length;
8 i = 0;
9 j = 0;

10 t = 0;
11 while i < n1 && j < n2 do
12 if LeftArray[i] <= RightArray[j] then
13 arrayA[t] = LeftArray[i];
14 i = i+ 1;

15 end
16 else
17 arrayA[t] = RightArray[j];
18 j = j + 1;

19 end
20 t = t+ 1;

21 end
22 while i < n1 do
23 arrayA[t] = LeftArray[i];
24 i = i+ 1;
25 t = t+ 1;

26 end
27 while j < n2 do
28 arrayA[t] = RightArray[j];
29 j = j + 1;
30 t = t+ 1;

31 end
32 return arrayA;

33 MergeSort(int [] arrayA)):
34 if n=1 then
35 return arrayA;
36 end
37 mid = n

2 ; // calculate the mid index of arrayA, it returns the floor value ⌊n2 ⌋.
38 Create two arrays:
39 LeftArray of length mid and RightArray of length n−mid;
40 Copy elements 0 to mid− 1 of arrayA to LeftArray.
41 Copy elements mid to n− 1 of arrayA to RightArray.
42 MergeSort(LeftArray);
43 MergeSort(RightArray);
44 MergeArrays(LeftArray, RightArray, arrayA);

5 Quick sort

■ Quick sort is also a Divide and Conquer-based algorithm.

page 15 of 20



CS 2383 February 21, 2023

■ As noted previously, in the divide and conquer-based algorithms, a problem is split or divided into
smaller problems or sub-problems. Then the solutions to sub-problems are combined to form the
solution to the bigger problem.

• In the quick sort, an element of the sequence or array is chosen as a Pivot, then smaller elements than
the Pivot is moved to the left-side of the Pivot and greater elements are moved to the right-side. The
step is repeated until one-one elements remain in each array (visualize it as leaf nodes of a tree). Then
merging process starts, left-side elements are copied first then the Pivot and then right-side elements
are copied. Merging starts at lowest level elements, and moving upward (left, Pivot, right).

• Pivot elements can be:

– The first element of the array.

– The last element of the array.

– The mid element of the array.

– or a randomly chosen element of the array, following certain probability distribution.

■ Quick sort has time complexity O(n2) for a given input size n.

■ Quick sort has lower bound time complexity Ω(n log n) for a given input size n.

■ Quick sort has average bound time complexity Θ(n log n) for a given input size n.

page 16 of 20



CS 2383 February 21, 2023

page 17 of 20



CS 2383 February 21, 2023

page 18 of 20



CS 2383 February 21, 2023

Figure 4: Quick sort.

page 19 of 20



CS 2383 February 21, 2023

6 Stable sorting algorithms

Stable algorithms retain relative order of elements in the sorted sequence.
Some of the stable sorting algorithms are:

• Insertion sort

• Bubble sort

• Merge sort

Unstable sorting algorithms are:

• Quick sort.

7 In-place sorting algorithms

In in-place algorithms, additional space or memory is required; nevertheless, a small extra amount is tolerated
for swap and method calls.
Some of the in-place sorting algorithms are:

• Bubble sort

• Insertion sort

• Quick sort.

Not in-place sorting algorithms:

• Merge sort, Merge sort takes of the order of O(n) extra space.

Quick sort is considered as an in-place algorithm; however, it takes a few additional space.
Reference book: [1]

References

[1] Michael T. Goodrich, Roberto Tamassia, and Michael H. Goldwasser. Data Structures and Algorithms
in Java. Wiley, 6th edition, 2014. 20

page 20 of 20


	1 Introduction
	2 Bubble sort
	3 Insertion sort
	4 Merge sort
	5 Quick sort
	6 Stable sorting algorithms
	7 In-place sorting algorithms

