Data Structures and Algorithms University of New Brunswick Fredericton, New Brunswick, Canada

Spring 2023

Instructor:	Syed Eqbal Alam	Date Due: February 20, 11:59pm
Email:	syed.eqbal@unb.ca	Online submission on D2L

Assignment part 1

Instructions: Every question has equal weight. All group members should participate equally.

1 Algorithm Analysis

Question 1.1. Let ArrayA stores n positive integer values, and the array index starts from 0. Find the relationship between the array size n and the total number of basic operations required to perform the task in following code snippet. What is the upper bound of its time complexity?

 $\begin{array}{l} for(int \ i=0; i < n; i++) \\ for(int \ j=1; j < Array A[i]; j=j*2) \\ System.out.println(j+""); \end{array}$

Question 1.2. For $n \ge 2$, if $f(n) = 3n + 2n \log_2(n)$. Then show that f(n) is order of $O(n \log_2 n)$.

Question 1.3. For $n \ge 1$, if $f(n) = 3n^2 + 2n \log_2(n)$. Then show that f(n) is $O(n^2)$.

Question 1.4. For $n \ge 1$, if $f(n) = 3n^3 + 2n^2 + 5n \log_2(n)$. Then show that f(n) is $O(n^3)$.

Question 1.5. For $n \ge 10$, if $f(n) = 3n^3 + 2^n$. Then show that f(n) is $O(2^n)$.

Question 1.6. For $n \ge 4$, if $f(n) = 2^n + n!$. Then show that f(n) is O(n!).

Question 1.7. Show that the Algorithm to find a number is even or odd is O(1).

Question 1.8. Show that the Algorithm to find the maximum value of an array is O(n).

Question 1.9. What is the upper bound, lower bound, and average bound of Binary search tree. Illustrate with an example.

Question 1.10. Show that calculating the minimum value in an array is O(n).

Question 1.11. Show that bubble sort is $O(n^2)$.

Question 1.12. Show that Insertion sort is $O(n^2)$.

Question 1.13. Show that Merge sort is $O(n \log n)$.

Question 1.14. Find out the time complexity of Quick sort (the lower bound, average bound, and the upper bound).

Question 1.15. Show that matrix addition is $O(n^2)$.

Question 1.16. Show that matrix multiplication is $O(n^3)$.

Question 1.17. If $f(n) = \sum_{i=1}^{n} i$, then show that f(n) is $O(n^2)$.

Question 1.18. If $f(n) = \sum_{i=1}^{n} i^2$, then show that f(n) is $O(n^3)$.

The following questions are from the book [1].

Question 1.19. [1][Chapter 4, R-4.8]

Question 1.20. [1][Chapter 4, R-4.9]

Question 1.21. [1]/Chapter 4, R-4.10]

Question 1.22. [1]/Chapter 4, R-4.11]

Question 1.23. [1][Chapter 4, R-4.12]

Question 1.24. [1][Chapter 4, R-4.13]

Question 1.25. [1][Chapter 4, R-4.14]

Question 1.26. [1]/Chapter 4, R-4.15]

Question 1.27. [1]/Chapter 4, R-4.16]

Question 1.28. [1][Chapter 4, R-4.23]

Question 1.29. [1][Chapter 4, R-4.25]

Question 1.30. [1][Chapter 4, R-4.26]

Bonus points

Solve the following questions (1.31 and 1.32) for bonus points:

Question 1.31. [1][Chapter 4, C-4.52]

Question 1.32. [1][Chapter 4, C-4.53]

References

 Michael T. Goodrich, Roberto Tamassia, and Michael H. Goldwasser. Data Structures and Algorithms in Java. Wiley, 6th edition, 2014.