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Abstract

We propose a new class of mathematical structures called (m,n)-semirings (which

generalize the usual semirings), and describe their basic properties. We also define

partial ordering, and generalize the concepts of congruence, homomorphism, etc.,

for (m,n)-semirings. Following earlier work by Rao [37], we consider a system as

made up of several components whose failures may cause it to fail, and represent the

set of systems algebraically as an (m,n)-semiring. Based on the characteristics of

these components we present a formalism to compare the fault tolerance behavior of

two systems using our framework of a partially ordered (m,n)-semiring. Assuming

0 as a system which is “always up” and 1 as a system which is “always down”,

based on these assumptions we prove which system is more fault tolerant. We also

compare the fault tolerance behavior of two congruent system using the congruence

relation. We check whether two systems are congruent or not based on their fault

tolerance behavior. We have also mentioned an example of wireless sensor network

and comparison of fault tolerance in two such networks.

Key words:

(m,n)-semiring, components, fault tolerance, partial ordering, congruent system
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Chapter 1

Introduction

1.1 An Overview of Fault Tolerance

Fault is defined as a “defect” at the lowest level of abstraction [30]. Thus a “fault”

is related to the components of a system due to which the components may fail or

give error[36]. Fault tolerance is the property of a system to be functional even if

some of its components fail. As stated by Abbott [1] “ a system is fault tolerant

to the extent that it can prevent faults from causing failure”. It is a very critical

issue in the design of the systems as in Air Traffic Control Systems [13, 9], real-

time embedded systems [6], robotics [22, 33], automation systems [5, 12], medical

systems [17], mission critical systems [35] and a lot of other places. In 1967 the

paper “design of fault tolerant computers” [4] appeared which presents a notion of

fault-tolerant systems and types of faults. Cristian [11] presents basic concepts for

designing a fault tolerant distributed systems, Jalote [30] puts forth the fundamental

concepts of fault tolerance in distributed systems. We use the fact that each system

consists of components or sub-systems, the fault tolerance behavior of the system

depends on each of the components or sub-systems that constitute the system. A

system may itself be a module or part of a larger system, so that its fault-tolerance
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affects that of the whole system of which it is a part. In Chapter 3 we analyze

the fault tolerance of a system using the proposed new class of algebraic structure

(m,n)-semiring extending the earlier work of Rao [37].

Fault tolerance modeling using algebraic structures is proposed by Beckmann [7]

for groups, and by Hadjicostis [27] for semigroups and semirings. Semirings are also

used in other areas of computer science like cryptography [34], databases [26], graph

theory, game theory [25], etc. Rao [37] uses the formalism of semirings to analyze the

fault-tolerance of a system as a function of its composition, with a partial ordering

relation between systems used to compare their fault-tolerance behaviors.

1.2 Motivation and Background

In this section we define semiring and mention some of the basic properties of it and

we also define system semiring and its properties as defined by Rao [37]. Subsection

1.2.1 deals with the definition and fundamental properties of semiring which we have

generalized in Chapter 2 and Subsection 1.2.2 deals with the properties of system

semiring and fault tolerance partial ordering which we have generalized in Chapter

3.

1.2.1 Semirings and Their Fundamental Properties

Definition 1.2.1. Let R be a non empty set.

(i) R with a binary operation “×” is called a groupoid and is denoted by (R,×) [29].

(ii) If elements of (R,×) also follow the associative law then (R,×) is called a

semigroup, i.e., if elements x, y, z be in R and x× (y × z) = (x× y)× z then

(R,×) is a semigroup [29].
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(iii) The algebraic structure (R,+,×) which supports the addition (+) and mul-

tiplication (×) operations, and satisfies the following conditions is called a

semiring :

(a) (R,+) is a commutative semigroup,

(b) (R,×) is a semigroup, and

(c) Multiplication distributes over addition [25, 28].

Example 1.2.2. Let Z+ be a set of all positive integers, then (Z+,+,×) is a

semiring, where + and × has its usual meaning of addition and multiplication

operations [29].

Example 1.2.3. Let B be a set. Then (B,∪,∩) is a semiring, where ∪ denotes

union and ∩ denotes the intersection operations of two elements [29].

Definition 1.2.4. We restate following properties of a semiring as defined by

Hebisch and Weinert [28]:

(i) The semigroup (R,+) has an identity element 0, then if x ∈ R, the following

relation holds (x + 0) = x. Similarly the semigroup (R,×) has an identity

element 1, then if y ∈ R, the following relation holds (y × 1) = y.

(ii) We define multiplicatively absorbing 0 if x× 0 = 0 = 0× x for all x ∈ R.

(iii) x is called an idempotent of semigroup (R,+) if x+x = x, ∀x ∈ R. A semiring

(R,+,×) is called additively idempotent, if (R,+) is an idempotent semigroup,

similarly we define multiplicatively idempotent, if (R,×) is an idempotent, i.e,

y × y = y for all y ∈ R.
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We mention some of the results of Chapter I of Hebisch and Weinert [28] as

follows:

Theorem 1.2.5. A semiring (R,+,×) with an identity element 0 is additively

idempotent if and only if 0+ 0 = 0 holds.

Theorem 1.2.6. A semiring (R,+,×) having at least two additively idempotent

elements is not additively cancellative.

Proof. Let a, b be two additively idempotent elements in R and a 6= b.

As a+ b = a+ b, using idempotent property of elements a, b, we can write it as

follows:

a + a+ b = a+ b+ b

which can be written as

a + (a+ b) = (a+ b) + b

let the semiring (R,+,×) is additively cancellative, then

a + (a+ b) = (a+ b) + b =⇒ a = b

which is a contradiction to our assumption that a 6= b, thus (R,+,×) is not

additively cancellative.

Definition 1.2.7. Let (R,+,×) and (S,+,×) be semirings. Then the mapping

ϕ : R → S is called homomorphism of (R,+,×) into (S,+,×) if following hold

(i) ϕ(x+ y) = ϕ(x) + ϕ(y) and
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(ii) ϕ(x× y) = ϕ(x)× ϕ(y) for all x, y ∈ R.

Definition 1.2.7 is Definition 3.1 in [28].

Theorem 1.2.8. Let (R,+,×), (S,+,×) and (T ,+,×) be semirings. Then if the

following mappings ϕ : (R,+,×) → (S,+,×) and ψ : (S,+,×) → (T ,+,×) are

homomorphisms, then

ψ ◦ ϕ : (R,+,×) → (T ,+,×) is also a homomorphism.

For more details about the properties of semirings we can check [25, 28, 23].

1.2.2 System Semiring and Fault Tolerance Partial Order-

ing

In this section we use U which denotes the universal set of all systems in the domain

of discourse as given by Rao [37]. We use component to refer to an atomic part of

a system, i.e., which has no component or sub-system of its own, and subsystem to

refer to a part of a system that is not necessarily atomic. We assume that compo-

nents and subsystems are disjoint, in the sense that if fail, they fail independently

and do not affect the functioning of other components [37].

Definition 1.2.9. As stated by Rao [37], we define the direct sum + and direct

product × as following:

(i) The + operator is considered to apply for systems consisting of two compo-

nents when the failure of either would cause the system as a whole to fail.

(ii) The × operator applies for systems consisting of two components when the

failure of both is necessary to cause the system as a whole to fail.
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Remark 1.2.10. Let a, b are disjoint components, which are in U then the system

constituted by applying + operator is a+ b, this system fails when either of a and b

fail. And the system constituted by applying × operator is a × b, this system fails

when both the components fail [37].

Definition 1.2.11. (i) We denote system semiring for the binary operation +

and × as (U ,+,×), which satisfies all conditions of Definition 1.2.1 (iii) [37].

(ii) Identity elements of a semiring are defined as follows [37]:

(a) The additive identity 0 is the system such that for any system A, A+0 =

0+ A = A.

(b) The multiplicative identity 1 is the system such that for any system A,

A× 1 = 1× A = A.

(iii) If 4 be a partial ordering relation on U , such that (U ,4) is a poset then this

is called as fault-tolerance partial ordering where A 4 B means that A has a

lower measure of some fault metric than B (e.g., A has fewer failures per hour

than B, or has a better fault tolerance than B) for all A,B ∈ U [37].

(iv) (U ,+,×,4) is a partially ordered semiring if the following conditions are sat-

isfied, for all A,B, and C in U [28, 37].

(a) The monotony law of addition:

A 4 B −→ A + C 4 B + C

(b) The monotony law of multiplication:

A 4 B −→ A× C 4 B × C.
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Remark 1.2.12. We assume 0 is a system which is “always up” and 1 is a system

which is “always down” then for all x ∈ U , 0 4 x which states that 0 is more fault

tolerant than x. Similarly, y 4 1 for all y ∈ U states that y is more fault tolerant

than 1 [37].

We mention some of the results of Rao [37] below. For the proof of these results

please refer to [37].

Lemma 1.2.13. If 4 is a fault-tolerance partial order, then ∀A,B ∈ U :

(i) A 4 A+B, and

(ii) A× B 4 A.

This states that, the system constituted by applying + operator on on its com-

ponents or subsystems is less fault tolerant than a single component or subsystem.

Similarly if we apply × on two components or subsystems then any subsystem or

component is less fault tolerant than the constituted system.

Lemma 1.2.14. If 4 is a fault-tolerance partial order, then ∀n ∈ Z+ and ∀A ∈ U ,

(i) A 4 nA, and

(ii) An 4 A.

Theorem 1.2.15. If A 4 B and X 4 Y , where 4 is a partial order, then following

hold:

(i) A+X 4 B + Y and

(ii) A×X 4 B × Y

7



This theorem states that if one component or subsystem of a system is less

fault tolerant than the other subsystem of some other system, similarly the other

component also then the system constituted is less fault tolerant than the other

system.

Corollary 1.2.16. If 4 is a fault-tolerance partial order and if A 4 B, then ∀n ∈

Z+,

(i) nA 4 nB, and

(ii) An 4 Bn.

Corollary 1.2.17. The following hold for all A,B ∈ U and all n ∈ Z+:

(i) if nA 4 B, then A 4 B; and

(ii) if A 4 Bn, then A 4 B.

Theorem 1.2.18. If Ai 4 Bi, with 0 ≤ i ≤ n− 1 and Ai, Bi ∈ U , then:

n−1∑

i=0

Ai 4

n−1∑

i=0

Bi,

and

n−1∏

i=0

Ai 4

n−1∏

i=0

Bi.

In this Thesis, we first define the (m,n)-semiring (R, f, g), (which is a general-

ization of the ordinary semiring (R,+,×), where R is a set with binary operations

+ and ×), using f and g which arem-ary and n-ary operations respectively. We pro-

pose identity elements, multiplicatively absorbing elements, idempotents, homomor-

phism, subsemiring, center and i-center of the (m,n)-semiring. We also briefly touch
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on zero-divisor free, zero-sum free, additively cancellative, and multiplicatively can-

cellative (m,n)-semirings, and the congruence relation on (m,n)-semirings.

1.3 Arrangement of Chapters

In Chapter 2 we use R to represent the set, whereas in Chapter 3 and Chapter 4,

U is used to represent the set of all systems and talk about system (m,n)-semiring.

Chapter 2 deals with the notations used, the general conventions followed and

definition and basic properties of (m,n)-semiring. In Chapter 3 we extend the

results of Rao [37] using partially ordered (m,n)-semiring. A class of systems is

algebraically represented by an (m,n)-semiring, and the fault tolerance behavior of

two systems is compared using partially ordered (m,n)-semiring.

Chapter 4 explains about the congruence relation and fault tolerance behavior

of congruent systems. In this Chapter we compare the fault tolerance behavior of

two systems.

9



Chapter 2

(m,n)-Semirings and Their

Properties

2.1 Preliminaries

The set of integers is denoted by Z, with Z+ and Z− denoting the sets of positive

integers and negative integers respectively. Let R be a set and f be a mapping

f : Rm → R, i.e., f is an m-ary operator, likewise g is an n-ary operator, where

m,n ∈ Z+. Elements of the set R are denoted by xi, yi where i ∈ Z+.

In Chapter 3, 4 denotes fault-tolerance partial order, U is used to denote the

set of all systems in the domain of discourse, letters with subscript like ai denote

the components which are in U , where i ∈ Z+.

In Chapter 4, ∼= denotes the congruence relation.

We use following general convention as followed by [21, 20, 14]:

The sequence xi, xi+1, . . . , xm is denoted by xmi .

10



The following term:

f(x1, . . . , xi, yi+1, . . . , yj, zj+1, . . . , zm) (2.1)

is represented as:

f(xi1, y
j
i+1, z

m
j+1) (2.2)

In the case when yi+1 = . . . = yj = y, then (2.2) is expressed as:

f(xi1,
(j−i)
y , zmj+1)

If x1 = . . . = xi = yi+1 = . . . = yj = zj+1 = . . . = zm = f(am1 ), then (2.1) is

represented as:

f(
(m)

f(am1 ))

Definition 2.1.1. (i) A nonempty set R with an m-ary operation f is called an

m-ary groupoid and is denoted by (R,f) (see Dudek [20]).

(ii) Let x1, x2, . . . , x2m−1 ∈ R. Then the associativity and distributivity laws for

the m-ary operator f are defined as follows:

(a) Associativity :

f(xi−1
1 , f(xm+i−1

i ), x2m−1
m+i ) = f(xj−1

1 , f(xm+j−1
j ), x2m−1

m+j )

for all x1, . . . , x2m−1 ∈ R and holds for all 1 ≤ i ≤ j ≤ m (from

Gluskin [24]).

(b) Commutativity :

f(x1, x2, . . . , xm) = f(xη(1), xη(2), . . . , xη(m))

for every permutation η of {1, 2, . . . , m} (from Timm [39]), ∀x1, x2, . . . , xm ∈

11



R.

Remark 2.1.2. For all x, y, a ∈ R, the following is commutative (from Dudek [18]):

f(x, a, . . . , a
︸ ︷︷ ︸

m−2

, y) = f(y, a, . . . , a
︸ ︷︷ ︸

m−2

, x).

Definition 2.1.3. Let R be a set.

(i) An m-ary groupoid (R, f) is called an m-ary semigroup if f is associative

(from Dudek [20]) i.e, if

f(xi−1
1 , f(xm+i−1

i ), x2m−1
m+i ) = f(xj−1

1 , f(xm+j−1
j ), x2m−1

m+j )

for all x1, . . . , x2m−1 ∈ R, where 1 ≤ i ≤ j ≤ m.

(ii) Let x1, x2, . . . , xn, a1, a2, . . . , am be elements of set R and 1 ≤ i ≤ n. The

n-ary operator g is distributive with respect to the m-ary operator f if:

g(xi−1
1 , f(am1 ), x

n
i+1) = f(g(xi−1

1 , a1, x
n
i+1), . . . , g(x

i−1
1 , am, x

n
i+1)).

Remark 2.1.4. Consider a k-ary group (G, h) in which the k-ary operation h is

distributive with respect to itself, i.e.,

h(xi−1
1 , h(ak1), x

k
i+1) = h(h(xi−1

1 , a1, x
k
i+1), . . . , h(x

i−1
1 , ak, x

k
i+1)),

for all 1 ≤ i ≤ k. These type of groups are called autodistributive k-ary groups

(Dudek [19]).

2.2 Definition and Examples of (m,n)-Semirings

Definition 2.2.1. An (m,n)-semiring is an algebraic structure (R, f, g) which sat-

isfies the following axioms:

(i) (R, f) is an m-ary semigroup,
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(ii) (R, g) is an n-ary semigroup,

(iii) the n-ary operator g is distributive with respect to the m-ary operation f , i.e.,

for every x1, x2, . . . , xn, a1, a2, . . . , am ∈ R, 1 ≤ i ≤ n,

g(xi−1
1 , f(am1 ), x

n
i+1) = f(g(xi−1

1 , a1, x
n
i+1), . . . , g(x

i−1
1 , am, x

n
i+1))

Example 2.2.2. Let B be any Boolean algebra. Then (B, f, g) is an (m,n)-semiring

where f(Am
1 ) = A1 ∪ A2 ∪ . . . ∪ Am and g(Bn

1 ) = B1 ∩ B2 ∩ . . . ∩ Bn, for all

A1, A2, . . . , Am and B1, B2, . . . , Bn ∈ B.

In general, we have the following

Theorem 2.2.3. Let (R,+,×) be an ordinary semiring. Let f be an m-ary oper-

ation and g be an n-ary operation on R as follows:

f(xm1 ) =

m∑

i=1

xi, ∀x1, x2, . . . , xm ∈ R,

g(yn1 ) =

n∏

i=1

yi, ∀y1, y2, . . . , yn ∈ R.

Then (R, f, g) is an (m,n)-semiring.

Proof. Omitted as obvious.

Example 2.2.4. The following give us some (m,n)-semirings in different ways

indicated by Theorem 2.2.3.

(i) Let (R,+,×) be an ordinary semiring and x1, x2, . . . , xn be in R. If we set:

g(xn1) = x1 × x2 × . . .× xn.

13



Then we get a (2, n)-semiring (R,+, g).

(ii) The set Z− of all negative integers is not closed under the binary products,

i.e., Z− does not form a semiring, but it is a (2, 3)-semiring.

2.3 Identity Elements

Definition 2.3.1. Let (R, f, g) be an (m,n)-semiring. Then m-ary semigroup

(R, f) has an identity element 0 such that

x = f(0, . . . , 0
︸ ︷︷ ︸

i−1

, x, 0, . . . , 0
︸ ︷︷ ︸

m−i

)

for all x ∈ R and 1 ≤ i ≤ m, We call 0 as an identity element of (m,n)-semiring

(R, f, g).

Similarly, n-ary semigroup (R, g) has an identity element 1 such that

y = g(1, . . . , 1
︸ ︷︷ ︸

j−1

, y, 1, . . . , 1
︸ ︷︷ ︸

n−j

)

for all y ∈ R and 1 ≤ j ≤ n.

We call 1 as an identity element of (m,n)-semiring (R, f, g).

We therefore call 0 the f -identity, and 1 the g-identity.

Remark 2.3.2. In an (m,n)-semiring (R, f, g), placing 0 and 1, (m−2) and (n−2)

times respectively, we obtain the following binary operations:

x+ y = f(x, 0, . . . , 0
︸ ︷︷ ︸

m−2

, y) and x× y = g(x, 1, . . . , 1
︸ ︷︷ ︸

n−2

, y), for all x, y ∈ R.

Definition 2.3.3. Let (R, f, g) be an (m,n)-semiring with an f -identity element 0

and g-identity element 1. Then:
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(i) 0 is said to be multiplicatively absorbing if it is absorbing in (R, g), i.e., if

g(0, xn−1
1 ) = g(xn−1

1 , 0) = 0

for all x1, x2, . . . , xn−1 ∈ R.

(ii) (R, f, g) is called zero-divisor free if

g(x1, x2, . . . , xn) = 0

always implies x1 = 0 or x2 = 0 or . . . or xn = 0.

Elements x1, x2, . . . , xn−1 ∈ R are called left zero-divisors of (m,n)-semiring

(R, f, g) if there exists a 6= 0 and the following holds:

g(xn−1
1 , a) = 0.

(iii) (R, f, g) is called zero-sum free if

f(x1, x2, . . . , xm) = 0

always implies x1 = x2 = . . . = xm = 0.

(iv) (R, f, g) is called additively cancellative if the m-ary semigroup (R, f) is can-

cellative, i.e.,

f(xi−1
1 , a, xmi+1) = f(xi−1

1 , b, xmi+1) =⇒ a = b

for all a, b, x1, x2, . . . , xm ∈ R.
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(v) (R, f, g) is called multiplicatively cancellative if the n-ary semigroup (R, g) is

cancellative, i.e.,

g(xi−1
1 , a, xni+1) = g(xi−1

1 , b, xni+1) =⇒ a = b

for all a, b, x1, x2, . . . , xn ∈ R.

Elements x1, x2, . . . , xn−1 are called left cancellable in an n-ary semigroup

(R, g) if

g(xn−1
1 , a) = g(xn−1

1 , b) =⇒ a = b

for all x1, x2, . . . , xn−1, a, b ∈ R.

(R, f, g) is called multiplicatively left cancellative if elements x1, x2, . . . , xn−1 ∈

R \ {0} are multiplicatively left cancellable in n-ary semigroup (R, g).

Theorem 2.3.4. Let (R, f, g) be an (m,n)-semiring with f -identity 0.

(i) If elements x1, x2, . . . , xn−1 ∈ R are multiplicatively left cancellable, then

elements x1, x2, . . . , xn−1 are not left divisors.

(ii) If the (m,n)-semiring (R, f, g) is multiplicatively left cncellative, then it is

zero-divisor free.

We have generalized Theorem 2.3.4 from Theorem 4.4 of Hebisch and Wein-

ert [28].

We have generalized the definition of idempotents of semirings given by Bourne [8]

and Hebisch and Weinert [28]), as following.
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2.4 Idempotents of (m,n)-Semirings

Definition 2.4.1. Let (R, f, g) be an (m,n)-semiring. Then:

(i) It is called additively idempotent if (R, f) is an idempotent m-ary semigroup,

i.e., if

f(x, x, . . . , x
︸ ︷︷ ︸

m

) = x

for all x ∈ R.

(ii) It is called multiplicatively idempotent if (R, g) is an idempotent n-ary semi-

group, i.e., if

g(y, y, . . . , y
︸ ︷︷ ︸

n

) = y

for all y ∈ R, y 6= 0.

Theorem 2.4.2. An (m,n)-semiring (R, f, g) having at least two multiplicatively

idempotent elements is not multiplicatively cancellative.

Proof. Let a and b be two multiplicatively idempotent elements, a 6= b. Then:

g(1, . . . , 1
︸ ︷︷ ︸

n−2

, g(
(n)
a ), b) = g(1, . . . , 1

︸ ︷︷ ︸

n−2

, a, g(
(n)

b ))

which is represented as:

g(1, . . . , 1
︸ ︷︷ ︸

n−3

, g(1,
(n−1)
a ), a, b) = g(1, . . . , 1

︸ ︷︷ ︸

n−3

, a, b, g(1,
(n−1)

b )).

If the (m,n)-semiring (R, f, g) is multiplicatively cancellative, then the following

holds true:

g(1, . . . , 1
︸ ︷︷ ︸

n−1

, g(1,
(n−1)
a )) = g(1, . . . , 1

︸ ︷︷ ︸

n−1

, g(1,
(n−1)

b )),

g(1,
(n−1)
a ) = g(1,

(n−1)

b ),
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which implies that a = b, which is a contradiction to the assumption that a 6= b,

so that (R, f, g) is not multiplicatively cancellative.

We have generalized Exercise 2.7 in Chapter I of Hebisch and Weinert [28] to

get the following.

Theorem 2.4.3. An (m,n)-semiring (R, f, g) having an f -identity element 0 is

additively idempotent if and only if the following holds:

f(0, . . . , 0
︸ ︷︷ ︸

m

) = 0.

2.5 Congruence Relation

Definition 2.5.1. Let (R, f, g) be an (m,n)-semiring and ∼= be an equivalence

relation on R.

(i) Then∼= is called a congruence relation or a congruence of (R, f, g), if it satisfies

the following properties:

(a) if xi ∼= yi then f(x
m
1 )

∼= f(ym1 ) for all 1 ≤ i ≤ m; and,

(b) if zj ∼= uj then g(z
n
1 )

∼= g(un1) for all 1 ≤ j ≤ n,

for all x1, x2, . . . , xm, y1, y2, . . . , ym ,z1, z2, . . . , zn, u1, u2, . . . , un ∈ R.

(ii) Let ∼= be a congruence on an algebra R. Then the quotient of R by ∼=, written

as R/ ∼=, is the algebra whose universe is R/ ∼= and whose fundamental

operation satisfy

fR/∼=(x1, x2, . . . , xm) = fR(x1, x2, . . . , xm)/ ∼=

where x1, x2, . . . , xm ∈ R [10].
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Theorem 2.5.2. Let (R, f, g) be an (m,n)-semiring and the relation ∼= be a congru-

ence relation on (R, f, g). Then the quotient (R/ ∼=, F, G) is an (m,n)-semiring un-

der F ((x1)/ ∼=, . . . , (xm)/ ∼=) = f(xm1 )/
∼= and G((y1)/ ∼=, . . . , (yn)/ ∼=) = g(yn1 )/

∼=,

for all x1, x2, . . . , xm and y1, y2, . . . , yn in R.

Proof. Omitted as obvious.

2.6 Homomorphism and Isomorphism

Definition 2.6.1. We define homomorphism, isomorphism, and a product of two

mappings as follows:

(i) A mapping ϕ : R → S from (m,n)-semiring (R, f, g) into (m,n)-semiring

(S, f ′, g′) is called a homomorphism if

ϕ(f(xm1 )) = f ′(ϕ(x1), ϕ(x2), . . . , ϕ(xm))

and

ϕ(g(yn1 )) = g′(ϕ(y1), ϕ(y2), . . . , ϕ(yn))

for all x1, x2, . . . , xm, y1, y2, . . . , yn ∈ R.

(ii) The (m,n)-semirings (R, f, g) and (S, f ′, g′) are called isomorphic if there

exists one-to-one homomorphism from R onto S. One-to-one homomorphism

is called isomorphism.

(iii) If we apply mapping ϕ : R → S and then ψ : S → T on x we get the mapping

(ψ ◦ ϕ)(x) which is equal to ψ(ϕ(x)), where x ∈ R. It is called the product of
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ψ and ϕ [28].

We have generalized Definition 2.6.1 from Definition 2 of Allen [2].

We have generalized the following theorem from Theorem 3.3 given by Hebisch

and Weinert [28].

Theorem 2.6.2. Let (R, f, g), (S, f ′, g′) and (T , f ′′, g′′) be (m,n)-semirings. Then

if the following mappings ϕ : (R, f, g) → (S, f ′, g′) and

ψ : (S, f ′, g′) → (T , f ′′, g′′) are homomorphisms, then

ψoϕ : (R, f, g) → (T , f ′′, g′′) is also a homomorphism.

Proof. Let x1, x2, . . . , xm and y1, y2, . . . , yn be in R. Then:

(ψ ◦ ϕ)(f(xm1 )) = ψ(ϕ(f(x1, x2, . . . , xm)))

= ψ(f ′(ϕ(x1), ϕ(x2), . . . , ϕ(xm)))

= f ′′(ψ(ϕ(x1)), ψ(ϕ(x2)), . . . , ψ(ϕ(xm)))

= f ′′((ψ ◦ ϕ)(x1), (ψ ◦ ϕ)(x2), . . . , (ψ ◦ ϕ)(xm)).

In a similar manner, we can deduce that

(ψ ◦ ϕ)(g(yn1 )) = g′′((ψ ◦ ϕ)(y1), (ψ ◦ ϕ)(y2), . . . , (ψ ◦ ϕ)(yn)).

Thus it is evident that ψ ◦ ϕ is a homomorphism from R → T .

This proof is similar to that of Theorem 6.5 given by Burris and Sankap-

panavar [10].

Definition 2.6.3. Let (R, f, g) and (S, f ′, g′) be (m,n)-semirings, and let ϕ : R →

S be a homomorphism. Then the kernel of ϕ, written as kerϕ is, following Burris

and Sankappanavar [10], as follows:
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kerϕ = {(a, b) ∈ R×R | ϕ(a) = ϕ(b)}.

2.7 (m,n)-Subsemiring

Definition 2.7.1. Let S be a non-empty subset of R, where (R, f, g) is an (m,n)-

semiring. If (S, f, g) is an (m,n)-semiring, then S is called an (m,n)-subsemiring

of R.

Let (R, f, g) be an (m,n)-semiring. By an i-center of R we mean the set

Zi(R) = {a ∈ R | f(a, xm2 ) = f(xi2, a, x
m
i+1), ∀xm2 ∈ R}.

The set Z(R) =
m⋂

i=1

Zi(R) is called the center of R. If Zi(R) is non-empty,

then it is an (m,n)-subsemiring of R. If Z(R) is non-empty, then it is a maximal

commutative (m,n)-subsemiring of R.

Lemma 2.7.2. Let x1, x2, . . . , xm, y1, y2, . . . , yn ∈ R. Then:

(i) f(f(. . . f(f
︸ ︷︷ ︸

m

(x1, 0, . . . , 0
︸ ︷︷ ︸

m−1

), x2, 0, . . . , 0
︸ ︷︷ ︸

m−2

), . . .), xm, 0, . . . , 0
︸ ︷︷ ︸

m−2

) = f(x1, x2, . . . , xm),

(ii) g(g(. . . g(g
︸ ︷︷ ︸

n

(y1, 1, . . . , 1
︸ ︷︷ ︸

n−1

), y2, 1, . . . , 1
︸ ︷︷ ︸

n−2

), . . .), yn, 1, . . . , 1
︸ ︷︷ ︸

n−2

) = g(y1, y2, . . . , yn).

Proof. (i)

f(f(. . . f(f
︸ ︷︷ ︸

m

(x1, 0, . . . , 0
︸ ︷︷ ︸

m−1

), x2, 0, . . . , 0
︸ ︷︷ ︸

m−2

), . . .), xm, 0, . . . , 0
︸ ︷︷ ︸

m−2

). (2.3)

By associativity (Definition 2.1.1 (i)), (2.3) is equal to
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f(f(. . . f(f
︸ ︷︷ ︸

m

(0, 0, . . . , 0
︸ ︷︷ ︸

m−1

), x1, x2, 0, . . . , 0
︸ ︷︷ ︸

m−3

), . . .), xm, 0, . . . , 0
︸ ︷︷ ︸

m−2

)

= f(f(. . . f(f
︸ ︷︷ ︸

m−1

(0, x1, x2, 0, . . . , 0
︸ ︷︷ ︸

m−3

), x3, 0, . . . , 0
︸ ︷︷ ︸

m−2

), . . .), xm, 0, . . . , 0
︸ ︷︷ ︸

m−2

)

= f(f(. . . f(f
︸ ︷︷ ︸

m−1

(0, . . . , 0
︸ ︷︷ ︸

m

), x1, x2, x3, 0, . . . , 0
︸ ︷︷ ︸

m−4

), . . .), xm, 0, . . . , 0
︸ ︷︷ ︸

m−2

)

= f(f(. . . f(f
︸ ︷︷ ︸

m−2

(0, x1, x2, x3, 0, . . . , 0
︸ ︷︷ ︸

m−4

), . . .), xm, 0, . . . , 0
︸ ︷︷ ︸

m−2

)

...

= f(f(x1, x2, . . . , xm−1, 0), xm, 0, . . . , 0
︸ ︷︷ ︸

m−2

)

= f(f(x1, x2, . . . , xm−1, xm), 0, . . . , 0
︸ ︷︷ ︸

m−1

)

= f(x1, x2, . . . , xm).

(ii) Similar to part (i).

Lemma 2.7.3. Let am1 , b
m
2 , ..., k

m
2 ∈ R, t be the number of terms between am1 to km2

where t ∈ Z+ and f be an m-ary operator.

Then by f operation on a1, a2, . . . , am, b2, b3, . . . , bm, ..., k2, k3, . . . , km is equal to

f(. . . f(f
︸ ︷︷ ︸

t

(am1 ), b
m
2 ), . . . , k

m
2 ).

Proof. By f operation on a1, a2, . . . , am, we get the following:

f(a1, a2, . . . , am). (2.4)

By f operation on (2.4) with b2, b3, . . . , bm, we get:
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f(f(a1, a2, . . . , am), b2, b3, . . . , bm) (2.5)

By f operation on (2.5) with cm2 , we get

f(f(f(a1, a2, . . . , am), b2, b3, . . . , bm), c2, c3, . . . , cm)

...

f(. . . (f(f(f
︸ ︷︷ ︸

t−1

(a1, a2, . . . , am), b2, b3, . . . , bm),

c2, c3, . . . , cm) . . .), j2, j3, . . . , jm)

= f(. . . (f(f(f
︸ ︷︷ ︸

t−1

(am1 ), b
m
2 ), c

m
2 ) . . .), j

m
2 ). (2.6)

Similarly, by f operation on (2.6) with km2 , we get the following result

f(. . . (f(f(f
︸ ︷︷ ︸

t

(am1 ), b
m
2 ), c

m
2 ) . . .), k2, k3, . . . , km).
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Chapter 3

Partial Ordering On Fault

Tolerance

In this Chapter we use xi, yi, etc., where i ∈ Z+ to denote individual system com-

ponents that are assumed to be atomic at the level of discussion, i.e., they have

no components or sub-systems of their own. We use component to refer to such an

atomic part of a system, and subsystem to refer to a part of a system that is not

necessarily atomic. We assume that components and subsystems are disjoint, in the

sense that if fail, they fail independently and do not affect the functioning of other

components.

Let U be a universal set of all systems in the domain of discourse as given by

Rao [37], and let f be a mapping f : Um → U , i.e., f is anm-ary operator. Likewise,

let g be an n-ary operator.

3.1 Definition and Example of f and g

Definition 3.1.1. We define f and g for systems as follows:
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(i) f is an m-ary operator which applies on systems made up of m components

or subsystems, where if any one of the components or subsystems fails, then

the whole system fails.

Let a system made up of m components x1, x2, . . . , xm, then the system over

operator f is represented as f(x1, x2, . . . , xm) for all x1, x2, . . . , xm ∈ U . The

system f(x1, x2, . . . , xm) fails when any of the components x1, x2, . . . , xm fails.

(ii) g is an n-ary operator which applies on a system consisting of n components or

subsystems, which fails if all the components or subsystems fail; otherwise it

continues working even if a single component or subsystem is working properly.

Let a system consist of n components x1, x2, . . . , xn, then the system over

operator g is represented as g(x1, x2, . . . , xn) for all x1, x2, . . . , xn ∈ U . The

system g(x1, x2, . . . , xn) fails when all the components x1, x2, . . . , xn fail.

Example 3.1.2. Wemention an example of intrusion detection using wireless sensor

networks. The diffusion tree consists of sensor nodes using f and g operations (for

details of diffusion tree we can see [3]). The following cases arise.

Case (i) If a node fails and its predecessor nodes do not join any other nodes in

a different sub-diffusion tree dynamically.

If a node fails then its predecessor nodes are not able to transmit the signal to

the next level successor nodes even if they detect an intruder. This is an example of

f operation on nodes of the sub-diffusion tree to which the failed node is attached.

Due to the failure of one node all its predecessor nodes are unable to take part in

communication.

Case (ii) If a node fails and its predecessor nodes join other nodes in a different

sub-diffusion tree dynamically.
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If a node fails then its predecessor nodes join nodes in a different sub-diffusion

tree and take part in communication. If they detect an intruder they transmit the

signal to their successor nodes and these successor nodes transmit a signal to their

successor nodes and so on till it reaches the head node. The head node sends the

signal to the base station which does further processing. This case is a g operation

on the nodes, where if some nodes fail still these nodes do not affect other nodes

in their respective sub-diffusion tree and their predecessor nodes can join another

sub-diffusion tree dynamically for transmitting and receiving signals.

Case (iii) Comparison of fault tolerance behavior of two wireless sensor networks:

Let two wireless sensor networks consist of m nodes each. If we know the fault

tolerance behavior of each node of both networks, and we also know that sensor

node n1i of the first network has better fault tolerance than n2i of second network

for all 1 ≤ i ≤ m, then the first network has better fault tolerance than the second

network if they form similar diffusion trees.

3.2 Fault Tolerance Partial Ordering

Consider a partial ordering relation 4 on U , such that (U ,4) is a partially ordered

set (poset). This is a fault-tolerance partial ordering where f(xm1 ) 4 f(ym1 ) means

that f(xm1 ) has a lower measure of some fault metric than f(ym1 ) and f(x
m
1 ) has a

better fault tolerance than f(ym1 ), for all f(x
m
1 ), f(y

m
1 ) ∈ U (see Rao [38] for more

details) and x1, x2, . . . , xm, y1, y2, . . . , ym are disjoint components.

Assume that 0 represents the atomic system “which is always up” and 1 repre-

sents the system “which is always down” (see Rao [38]).

Observation 3.2.1. We observe the following for all disjoint components x1,x2, . . . , xm,

y1, y2, . . . , yn, which are in U :
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(i) g(yj−1
1 , 0, ynj+1) = 0 for all 1 ≤ j ≤ n.

This is so since 0 represents the component or system which never fails, and

as per the definition of g, the system as a whole fails if all the components

fail, and otherwise it continues working even if a single component is working

properly. In a system g(yj−1
1 , 0, ynj+1), even if all other components yj−1

1 and

ynj+1 fail even then 0 is up and the system is always up.

(ii) f(xi−1
1 , 1, xmi+1) = 1 for all 1 ≤ i ≤ m.

This is so since 1 represents the component or system which is always down,

and as per the definition of f if either of the component fails, then the whole

system fails. Thus, even though all other components are working properly

but due to the component 1 the system is always down.

3.3 Partially Ordered (m,n)-Semirings

Definition 3.3.1. If (U , f, g) is an (m,n)-semiring and (U ,4) is a poset, then

(U , f, g,4) is a partially ordered (m,n)-semiring if the following conditions are sat-

isfied for all x1, x2, . . . , xm, y1, y2, . . . , yn, a, b ∈ U and 1 ≤ i ≤ m, 1 ≤ j ≤ n.

(i) If a 4 b, then f(xi−1
1 , a, xmi+1) 4 f(xi−1

1 , b, xmi+1).

(ii) If a 4 b, then g(yj−1
1 , a, ynj+1) 4 g(yj−1

1 , b, ynj+1).

Remark 3.3.2. As it is assumed that 0 is the system which is always up, it is more

fault tolerant than any of the other systems or components. Therefore 0 4 a, for

all a ∈ U . Similarly, a 4 1 because 1 is the system that always fails and therefore

it is the least fault tolerant; every other system is more fault-tolerant than it.
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Observation 3.3.3. The following are obtained for all disjoint components r, s, xi, yj,

ai, bj , which are in U , where 1 ≤ i ≤ m , 1 ≤ j ≤ n:

(i) 0 4 f(xi−1
1 , r, xmi+1) 4 1.

(ii) 0 4 g(yj−1
1 , s, ynj+1) 4 1.

(iii) 0 4 g(yj−1
1 , f(am1 ), y

n
j+1) 4 1.

(iv) 0 4 f(xi−1
1 , g(bn1 ), x

m
i+1) 4 1.

From the above description of 0 and 1, the observation is quite obvious. Case (i)

shows that 0 is less faulty than f(xi−1
1 , r, xmi+1), and f(x

i−1
1 , r, xmi+1) is less faulty than

1. Similarly, case (ii) shows that 0 is more fault-tolerant than g(yj−1
1 , s, ynj+1) and

g(yj−1
1 , s, ynj+1) is more fault-tolerant than 1. Likewise, case (iii) shows the operation

g over yj−1
1 , ynj+1 and f of am1 to be less faulty than 1 and more faulty than 0, and

a similar interpretation is made for (iv).

3.4 Main Results

Lemma 3.4.1. If4 is a fault-tolerance partial order and x1, x2, . . . , xm, y1, y2, . . . , ym,

z1, z2, . . . , zn,u1, u2, . . . , un are disjoint components, which are in U , where m,n ∈

Z+, then:

(i) if xi 4 yi, then f(x
m
1 ) 4 f(ym1 ), where 1 ≤ i ≤ m and,

(ii) if zj 4 uj, then g(z
n
1 ) 4 g(un1), where 1 ≤ j ≤ n.

Proof. (i) Since xi 4 yi for all 1 ≤ i ≤ m, we have:
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x1 4 y1

which is represented as follows:

f(0, . . . , 0
︸ ︷︷ ︸

m−1

, x1) 4 f(0, . . . , 0
︸ ︷︷ ︸

m−1

, y1) (3.1)

and

f(0, . . . , 0
︸ ︷︷ ︸

m−1

, x2) 4 f(0, . . . , 0
︸ ︷︷ ︸

m−1

, y2). (3.2)

By f operation on both sides of (3.1) with y2, we get:

f(f(0, . . . , 0
︸ ︷︷ ︸

m−1

, x1), y2, 0, . . . , 0
︸ ︷︷ ︸

m−2

) 4 f(f(0, . . . , 0
︸ ︷︷ ︸

m−1

, y1), y2, 0, . . . , 0
︸ ︷︷ ︸

m−2

). (3.3)

By f operation on both sides of (3.2) with x1:

f(f(0, . . . , 0
︸ ︷︷ ︸

m−1

, x2), x1, 0, . . . , 0
︸ ︷︷ ︸

m−2

) 4 f(f(0, . . . , 0
︸ ︷︷ ︸

m−1

, y2), x1, 0, . . . , 0
︸ ︷︷ ︸

m−2

). (3.4)

From (3.3) and (3.4), we get:

f(f(0, . . . , 0
︸ ︷︷ ︸

m−1

, x1), y2, 0, . . . , 0
︸ ︷︷ ︸

m−2

) 4 f(f(0, . . . , 0
︸ ︷︷ ︸

m−1

, y1), y2, 0, . . . , 0
︸ ︷︷ ︸

m−2

).

Similarly, we find for m terms:
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f(. . . (f(f
︸ ︷︷ ︸

m

(0, . . . , 0
︸ ︷︷ ︸

m−1

, x1), x2, 0, . . . , 0
︸ ︷︷ ︸

m−2

), . . .), xm, 0, . . . , 0
︸ ︷︷ ︸

m−2

)

4 f(. . . (f(f
︸ ︷︷ ︸

m

(0, . . . , 0
︸ ︷︷ ︸

m−1

, y1), y2, 0, . . . , 0
︸ ︷︷ ︸

m−2

), . . .), ym, 0, . . . , 0
︸ ︷︷ ︸

m−2

).

(3.5)

From Lemma 2.7.2, (3.5) may be represented as

f(x1, x2, . . . , xm) 4 f(y1, y2, . . . , ym)

so

f(xm1 ) 4 f(ym1 ).

(ii) Since zj 4 yj, for all 1 ≤ j ≤ n

g(1, . . . , 1
︸ ︷︷ ︸

n−1

, z1) 4 g(1, . . . , 1
︸ ︷︷ ︸

n−1

, u1)

and

g(1, . . . , 1
︸ ︷︷ ︸

n−1

, z2) 4 g(1, . . . , 1
︸ ︷︷ ︸

n−1

, u2).

After following similar steps as seen in part (i), we use the g operation for n

terms,
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g(. . . (g(g
︸ ︷︷ ︸

n

(1, . . . , 1
︸ ︷︷ ︸

n−1

, z1), z2, 1, . . . , 1
︸ ︷︷ ︸

n−2

), . . .), zn, 1, . . . , 1
︸ ︷︷ ︸

n−2

)

4 g(. . . (g(g
︸ ︷︷ ︸

n

(1, . . . , 1
︸ ︷︷ ︸

n−1

, u1), u2, 1, . . . , 1
︸ ︷︷ ︸

n−2

), . . .), un, 1, . . . , 1
︸ ︷︷ ︸

n−2

)

which is represented as

g(z1, z2, . . . , zn) 4 g(u1, u2, . . . , un)

and so

g(zn1 ) 4 g(un1).

Theorem 3.4.2. If 4 is a fault-tolerance partial order and given disjoint compo-

nents ai, cj , bi, dj in U , where 1 ≤ i ≤ m, 1 ≤ j ≤ n, the following obtain:

(i) If ai 4 bi, where 1 ≤ i ≤ m, then:

g(yj−1
1 , f(am1 ), y

n
j+1) 4 g(yj−1

1 , f(bm1 ), y
n
j+1), for all y1, y2, . . . , yn ∈ U and 1 ≤

j ≤ n.

(ii) If cj 4 dj, where 1 ≤ j ≤ n, then:

f(xk−1
1 , g(cn1), x

m
k+1) 4 f(xk−1

1 , g(dn1), x
m
k+1), for all x1, x2, . . . , xm ∈ U and 1 ≤

k ≤ m.

Proof. (i) Since ai 4 bi, for all 1 ≤ i ≤ m.

Therefore, from Lemma 3.4.1 (i)

f(am1 ) 4 f(bm1 ), ∀a1, a2, . . . , am, b1, b2, . . . , bm ∈ U .
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From Definition 3.3.1 of a partially ordered (m,n)-semiring, we deduce that

g(yj−1
1 , f(am1 ), y

n
j+1) 4 g(yj−1

1 , f(bm1 ), y
n
j+1)

for all 1 ≤ j ≤ n.

(ii) Since cj 4 dj, for all 1 ≤ j ≤ n, from Lemma 3.4.1 (ii), we find that

g(cn1) 4 g(dn1), ∀c1, c2, . . . , cn, d1, d2, . . . , dn ∈ U .

From Definition 3.3.1 of a partially ordered (m,n)-semiring, we deduce that

f(xk−1
1 , g(cn1), x

m
k+1) 4 f(xk−1

1 , g(dn1), x
m
k+1)

for all 1 ≤ k ≤ m.

Lemma 3.4.3. If 4 is a fault-tolerance partial order and xi, yj are disjoint compo-

nents which are in U , where 1 ≤ i ≤ m and 1 ≤ j ≤ n, we get the following:

(i) xi 4 f(x1, x2, . . . , xm),

(ii) g(y1, y2, . . . , yn) 4 yj.

Proof. (i) As

0 4 x1, (3.6)

by f operation on both sides of (3.6) with xi, we get

f(0, xi, 0, . . . , 0
︸ ︷︷ ︸

m−2

) 4 f(x1, xi, 0, . . . , 0
︸ ︷︷ ︸

m−2

).
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Therefore,

xi 4 f(x1, xi, 0, . . . , 0
︸ ︷︷ ︸

m−2

).

Similarly, we obtain:

xi 4 f(x1, xi, 0, . . . , 0
︸ ︷︷ ︸

m−2

) 4 . . . 4 f(x1, x2, xi, . . . , xm−1, 0)

4 f(x1, x2, . . . , xm).

(3.7)

Hence,

xi 4 f(x1, x2, . . . , xm)

for all 1 ≤ i ≤ m.

(ii) As

y1 4 1, (3.8)

by g operation on both sides of (3.8) with yj, we get

g(y1, yj, 1, . . . , 1
︸ ︷︷ ︸

n−2

) 4 yj.

Similarly, we obtain:
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g(y1, y2, . . . , yn) 4 g(y1, y2, yj, . . . , yn−1, 1) 4 . . . 4

g(y1, yj, 1, . . . , 1
︸ ︷︷ ︸

n−2

) 4 yj .
(3.9)

Hence,

g(y1, y2, . . . , yn) 4 yj

for all 1 ≤ j ≤ n.

Corollary 3.4.4. If 4 is a fault-tolerance partial order, then the following hold for

all disjoint components xi, yj which are elements of U , where 1 ≤ i ≤ m, 1 ≤ j ≤ n

and k, t ∈ Z+:

(i) f(x1, x2, . . . , xk, 0, . . . , 0
︸ ︷︷ ︸

m−k

) 4 f(xm1 ),

where k < m; and

(ii) g(yn1 ) 4 g(y1, y2, . . . , yt, 1, . . . , 1
︸ ︷︷ ︸

n−t

),

where t < n.

Proof. (i) From (3.7) we deduce that,

f(x1, . . . , xk, 0, . . . , 0
︸ ︷︷ ︸

m−k

) 4 f(x1, . . . , xk+1, 0, . . . , 0
︸ ︷︷ ︸

m−k−1

)

4 . . . 4 f(x1, x2, . . . , xm).
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Therefore,

f(x1, . . . , xk, 0, . . . , 0
︸ ︷︷ ︸

m−k

) 4 f(xm1 ).

(ii) As in part (i), we deduce from (3.9) that:

g(yn1 ) 4 g(y1, y2, . . . , yt, 1, . . . , 1
︸ ︷︷ ︸

n−t

).

Theorem 3.4.5. If4 is a fault-tolerance partial order and x1, x2, . . . , xm,y1, y2, . . . , ym

,z1, z2, . . . , zn, u1, u2, . . . , un are disjoint components in U , then following hold:

(i) If f(xi, . . . , xm, 0, . . . , 0
︸ ︷︷ ︸

i−1

) 4 f(yi, . . . , ym, 0, . . . , 0
︸ ︷︷ ︸

i−1

),

then f(x1, x2, . . . , xm) 4 f(y1, y2, . . . , ym) for all 1 < i < m.

(ii) If g(zj , . . . , zn, 1, . . . , 1
︸ ︷︷ ︸

j−1

) 4 g(uj, . . . , un, 1, . . . , 1
︸ ︷︷ ︸

j−1

),

then g(z1, z2, . . . , zn) 4 g(u1, u2, . . . , un) for all 1 < j < n.

f(
(m)

f(am1 )) represents the system which is obtained after applying the f operation

on m repeated f(am1 ) systems or subsystems. Similarly, g(
(n)

g(bn1)) represents the

system which is obtained after applying the g operation on n repeated g(bn1) systems

or subsystems.

Theorem 3.4.6. If4 is a fault-tolerance partial order, and components x1, x2, . . . , xm

,y1, y2, . . . , yn are disjoint components and are in U , then:

(i) f(xm1 ) 4 f(
(m)

f(xm1 )) ,

(ii) g(
(n)

g(yn1 )) 4 g(yn1 ).
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Proof. (i) 0 represents the system which is always up, which is more fault tolerant

than any other system. Hence it is more fault tolerant than f(xm1 ), i.e.,

0 4 f(xm1 ), (3.10)

so by f operation on both sides of (3.10) with f(xm1 ), we get

f(0, f(xm1 ), 0, . . . , 0︸ ︷︷ ︸

m−2

) 4 f(f(xm1 ), f(x
m
1 ), 0, . . . , 0︸ ︷︷ ︸

m−2

)

which is written as

f(xm1 ) 4 f(0, . . . , 0
︸ ︷︷ ︸

m−2

,
(2)

f(xm1 )).

Similarly, we get the following:

0 4 f(0, . . . , 0
︸ ︷︷ ︸

m−1

, f(xm1 )) 4 . . . 4 f(0,
(m−1)

f(xm1 )) 4 f(
(m)

f(xm1 )).

Thus, we deduce that

f(xm1 ) 4 f(
(m)

f(xm1 )).

(ii) 1 represents the system which is always down, therefore any other system

is more fault tolerant than 1. Hence g(yn1 ) is more fault tolerant than 1.

Therefore,

g(yn1 ) 4 1, (3.11)
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and by g operation on both sides of (3.11) with g(yn1 ), we get

g(1, . . . , 1
︸ ︷︷ ︸

n−2

,
(2)

g(yn1 )) 4 g(yn1 ).

Similarly, we deduce the following:

g(
(n)

g(yn1 )) 4 g(1,
(n−1)

g(yn1 )). (3.12)

From (3.12), we get

g(
(n)

g(yn1 )) 4 g(1,
(n−1)

g(yn1 )) 4, . . . ,4 g(yn1 ).

Thus, we deduce the following

g(
(n)

g(yn1 )) 4 g(yn1 ).

Corollary 3.4.7. The following hold for all disjoint components x1, . . . , xm,z1, . . . , zn,

y1, . . . , ym, u1, . . . , un, which are elements of U , where m,n ∈ Z+:

(i) If f(
(m)

f(xm1 )) 4 f(ym1 ), then

f(xm1 ) 4 f(ym1 ).

(ii) If g(zn1 ) 4 g(
(n)

g(un1)), then

g(zn1 ) 4 g(un1).

Proof. (i) f(
(m)

f(xm1 )) 4 f(ym1 )

and from Theorem 3.4.6, f(xm1 ) 4 f(
(m)

f(xm1 )).

Therefore, f(xm1 ) 4 f(ym1 ).
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(ii) The proof is very similar to that of part (i).

Corollary 3.4.8. Let k and t be positive integers and k < m, t < n. Given disjoint

components x1, . . . , xm, y1, y2, . . . , ym, z1, z2, . . . , zn,u1, u2, . . . , un that are in U , the

following hold:

(i) If f(0, . . . , 0
︸ ︷︷ ︸

m−k

,
(k)

f(xm1 )) 4 f(ym1 ), then f(x
m
1 ) 4 f(ym1 ).

(ii) If g(zn1 ) 4 g(1, . . . , 1
︸ ︷︷ ︸

n−t

,
(t)

g(un1)), then g(z
n
1 ) 4 g(un1).

Proof. Similar to Corollary 3.4.7.

Theorem 3.4.9. Let 4 be a fault-tolerance partial order and xi 4 yi and zj 4 uj

for all xi, yi, zj, uj ∈ U , where 1 ≤ i ≤ m and 1 ≤ j ≤ n. Then the following obtain:

(i) f(
(m)

f(xm1 )) 4 f(
(m)

f(ym1 )),

(ii) g(
(n)

g(zn1 )) 4 g(
(n)

g(un1)),

(iii) f(
(m)

g(zn1 )) 4 f(
(m)

g(un1)),

(iv) g(
(n)

f(xm1 )) 4 g(
(n)

f(ym1 )).

Proof. (i) As

xi 4 yi, 1 ≤ i ≤ m,

from Lemma 3.4.1 (i), we get

f(xm1 ) 4 f(ym1 ).
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This is written as

f(0, . . . , 0
︸ ︷︷ ︸

m−1

, f(xm1 )) 4 f(0, . . . , 0
︸ ︷︷ ︸

m−1

, f(ym1 )). (3.13)

So by f operation on both sides of (3.13) with f(xm1 ), we get,

f(f(0, . . . , 0
︸ ︷︷ ︸

m−1

, f(xm1 )), f(x
m
1 ), 0, . . . , 0︸ ︷︷ ︸

m−2

) 4

f(f(0, . . . , 0
︸ ︷︷ ︸

m−1

, f(xm1 )), f(y
m
1 ), 0, . . . , 0︸ ︷︷ ︸

m−2

).

(3.14)

So by f operation on both sides of (3.13) with f(ym1 ), we get,

f(f(0, . . . , 0
︸ ︷︷ ︸

m−1

, f(xm1 )), f(y
m
1 ), 0, . . . , 0︸ ︷︷ ︸

m−2

) 4

f(f(0, . . . , 0
︸ ︷︷ ︸

m−1

, f(ym1 )), 0, . . . , 0︸ ︷︷ ︸

m−2

, f(ym1 )).

(3.15)

From (3.14) and (3.15), we get,

f(0, . . . , 0
︸ ︷︷ ︸

m−2

,
(2)

f(xm1 )) 4 f(0, . . . , 0
︸ ︷︷ ︸

m−2

,
(2)

f(ym1 )).

Similarly, we get for m terms:

f(
(m)

f(xm1 )) 4 f(
(m)

f(ym1 )).
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(ii) We know that

zj 4 uj, 1 ≤ j ≤ n.

From Lemma 3.4.1 (ii), we get,

g(zn1 ) 4 g(un1).

Which is represented as following

g(1, . . . , 1
︸ ︷︷ ︸

n−1

, g(zn1 )) 4 g(1, . . . , 1
︸ ︷︷ ︸

n−1

, g(un1)). (3.16)

Now by g operation on both sides of (3.16) with g(zn1 ), we get,

g(
(2)

g(zn1 ), 1, . . . , 1︸ ︷︷ ︸

n−2

) 4 g(g(zn1 ), g(u
n
1), 1, . . . , 1︸ ︷︷ ︸

n−2

). (3.17)

So by g operation on both sides of (3.16) with g(un1), we get,

g(1, . . . , 1
︸ ︷︷ ︸

n−2

, g(zn1 ), g(u
n
1)) 4 g(1, . . . , 1

︸ ︷︷ ︸

n−2

,
(2)

g(un1)). (3.18)

So now from (3.17) and (3.18), we get,

g(1, . . . , 1
︸ ︷︷ ︸

n−2

,
(2)

g(zn1 )) 4 g(1, . . . , 1
︸ ︷︷ ︸

n−2

,
(2)

f(un1 )).

Similarly, we find for n terms

g(
(n)

g(zn1 )) 4 g(
(n)

g(un1)).
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(iii) From Lemma 3.4.1 (ii)

g(zn1 ) 4 g(un1).

Similar to part (i), we find f of m terms and get

f(g(zn1 ), g(z
n
1 ), . . . , g(z

n
1 )

︸ ︷︷ ︸

m

) 4 f(g(un1), g(u
n
1), . . . , g(u

n
1)

︸ ︷︷ ︸

m

),

f(
(m)

g(zn1 )) 4 f(
(m)

g(un1)).

(iv) We know that

xi 4 yi, 1 ≤ i ≤ m,

so from Lemma 3.4.1 (i), we get

f(xm1 ) 4 f(ym1 ).

As proved in part (ii), we find g of n terms and get,

g(f(xm1 ), f(x
m
1 ), . . . , f(x

m
1 )

︸ ︷︷ ︸

n

) 4 g(f(ym1 ), f(y
m
1 ), . . . , f(y

m
1 )

︸ ︷︷ ︸

n

).

Thus, we get,

g(
(n)

f(xm1 ))4 g(
(n)

f(ym1 )) .

Corollary 3.4.10. If 4 is a fault-tolerance partial order and k < m, t < n where

k, t ∈ Z+, if xi 4 yi, zj 4 uj for all disjoint components xi, zj , yi, uj, which are in

U , where 1 ≤ i ≤ m and 1 ≤ j ≤ n then:
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(i) f(0, . . . , 0
︸ ︷︷ ︸

m−k

,
(k)

f(xm1 )) 4 f(0, . . . , 0
︸ ︷︷ ︸

m−k

,
(k)

f(ym1 ))

(ii) g(1, . . . , 1
︸ ︷︷ ︸

n−t

(t)

g(zn1 )) 4 g(1, . . . , 1
︸ ︷︷ ︸

n−t

,
(t)

g(un1)).

Proof. (i) As xi 4 yi, 1 ≤ i ≤ m and f is an m-ary operator, we get from

Lemma 3.4.1 (i),

f(xm1 ) 4 f(ym1 ).

As proved in Theorem 3.4.9 (i), we find f of k terms ∀k ∈ Z+, and k < m, we

obtain

f(0, . . . , 0
︸ ︷︷ ︸

m−k

,
(k)

f(xm1 )) 4 f(0, . . . , 0
︸ ︷︷ ︸

m−k

,
(k)

f(ym1 )).

(ii) As zj 4 uj, 1 ≤ j ≤ n and g is an n-ary operator, from Lemma 3.4.1 (ii), we

get,

g(zn1 ) 4 g(un1).

As proved in Theorem 3.4.9 (ii), we find the g of t terms ∀t ∈ Z+, where t < n,

so that

g(1, . . . , 1
︸ ︷︷ ︸

n−t

,
(t)

g(zn1 )) 4 g(1, . . . , 1
︸ ︷︷ ︸

n−t

,
(t)

g(un1)).

Theorem 3.4.11. If4 is a fault-tolerance partial order, disjoint components ai, bi, cj, dj,

xk, yk, zt, ut are in U and ai 4 bi, cj 4 dj, xk 4 yk and zt 4 ut, where 1 ≤ i ≤ m, 1 ≤

j ≤ n, 1 ≤ k ≤ m and 1 ≤ t ≤ n, then:

(i) f(xk−1
1 , f(am1 ), x

m
k+1) 4 f(yk−1

1 , f(bm1 ), y
m
k+1),

for all 1 ≤ k ≤ m; and
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(ii) f(xk−1
1 , g(cn1), x

m
k+1) 4 f(yk−1

1 , g(dn1), y
m
k+1),

for all 1 ≤ k ≤ m; and

(iii) g(zt−1
1 , f(am1 ), z

n
t+1) 4 g(ut−1

1 , f(bm1 ), u
n
t+1),

for all 1 ≤ t ≤ n; and

(iv) g(zt−1
1 , g(cn1), z

n
t+1) 4 g(ut−1

1 , g(dn1), u
n
t+1),

for all 1 ≤ t ≤ n.

Proof. (i) From Lemma 3.4.1 (i), if ai 4 bi, then f(a
m
1 ) 4 f(bm1 ), 1 ≤ i ≤ m.

We prove in a similar manner as Lemma 3.4.1 (i) that

f(f(am1 ), x1, 0, . . . , 0︸ ︷︷ ︸

m−2

) 4 f(f(bm1 ), y1, 0, . . . , 0︸ ︷︷ ︸

m−2

).

Similarly, we get,

f(f(am1 ), x
k−1
1 , xmk+1) 4 f(f(bm1 ), y

k−1
1 , ymk+1).

Thus,

f(xk−1
1 , f(am1 ), x

m
k+1) 4 f(yk−1

1 , f(bm1 ), y
m
k+1).

Similar to the above, we can prove (ii), (iii) and (iv).
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Chapter 4

Fault Tolerance In Congruent

Systems

4.1 Background

A relation is called an equivalence relation if it is reflexive, symmetric and transi-

tive [28].

Definition 4.1.1. (i) An equivalence relation ∼= on the elements of a semigroup

(U ,+) is called a congruence relation if it satisfies following:

if x1 ∼= y1 and x2 ∼= y2 then x1 + x2 ∼= y1 + y2.

(ii) An equivalence relation ∼= on the elements of a semiring (U ,+,×) is called a

semiring congruence relation if it satisfies following:

if x1 ∼= y1 and x2 ∼= y2 then x1 + x2 ∼= y1 + y2

and x1 × x2 ∼= y1 × y2

for all x1, x2, y1, y2 ∈ U [27].
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Given by Hadjicostis [27], and Hebisch and Weinert [28].

We generalize this relation for f and g which are m-ary and n-ary operators

respectively, as (U , f, g) (m,n)-semiring congruence relation.

4.2 (m,n)-Semiring Congruence Relation

Definition 4.2.1. Let (U , f, g) be an (m,n)-semiring and ∼= be an equivalence

relation on U . Then ∼= is an (m,n)-semiring congruence relation,

(i) If xi ∼= yi when f(x
m
1 )

∼= f(ym1 ) for all 1 ≤ i ≤ m and

(ii) If zj ∼= uj when g(z
n
1 )

∼= g(un1) for all 1 ≤ j ≤ n

for all x1, x2, . . . , xm, y1, y2, . . . , ym ,z1, z2, . . . , zn,u1, u2, . . . , un ∈ U .

We have generalized the definition given by Hadjicostis [27] and Hebisch and

Weinert [28] to get Definition 4.2.1, for more details we can see [10].

We use congruence relation in place of (m,n)-semiring congruence relation for

simplicity.

If two systems are congruent then their fault tolerance behavior will be similar.

Following Lemma 4.2.2 states that if components a and b are related by congru-

ence related ∼=, which shows that the fault tolerance metric of a and b are similar.

Then if we apply f operation on a and b with components xi−1
1 and xmi+1, then we

get the systems which have similar fault tolerance behavior. Similar is the case if

we apply g operation.

Lemma 4.2.2. Let ∼= be a congruence relation and a, b, x1, x2, . . . , xm, y1, y2, . . . , yn

be disjoint components and are in U . If a ∼= b and a, b ∈ U then
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(i) f(xi−1
1 , a, xmi+1)

∼= f(xi−1
1 , b, xmi+1),

where 1 ≤ i ≤ m.

(ii) g(yj−1
1 , a, ynj+1)

∼= g(yj−1
1 , b, ynj+1),

where 1 ≤ j ≤ n.

Proof. (i) As

a ∼= b a, b ∈ U (4.1)

by f operation on both sides of (4.1) with f(xi−1
1 , 0, xmi+1), we get

f(f(xi−1
1 , 0, xmi+1), a, 0, . . . , 0︸ ︷︷ ︸

m−2

) ∼= f(f(xi−1
1 , 0, xmi+1), b, 0, . . . , 0︸ ︷︷ ︸

m−2

)

which can be written as following:

f(f(xi−1
1 , a, xmi+1), 0, . . . , 0︸ ︷︷ ︸

m−1

) ∼= f(f(xi−1
1 , b, xmi+1), 0, . . . , 0︸ ︷︷ ︸

m−1

)

by using the property of f -identity element 0, we get the following result:

f(xi−1
1 , a, xmi+1)

∼= f(xi−1
1 , b, xmi+1)

for all a, b ∈ U and 1 ≤ i ≤ m.
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(ii)

a ∼= b ∀a, b ∈ U (4.2)

by g operation on both sides of (4.2) with g(yj−1
1 , 1, ynj+1), we get

g(g(yj−1
1 , 1, ynj+1), a, 1, . . . , 1︸ ︷︷ ︸

n−2

) ∼= g(g(yj−1
1 , 1, ynj+1), b, 1, . . . , 1︸ ︷︷ ︸

n−2

)

is written as:

g(g(yj−1
1 , a, ynj+1), 1, . . . , 1︸ ︷︷ ︸

n−1

) ∼= g(g(yj−1
1 , b, ynj+1), 1, . . . , 1︸ ︷︷ ︸

n−1

)

by using the property of g-identity element 1, we get the following result:

g(yj−1
1 , a, ynj+1)

∼= g(yj−1
1 , b, ynj+1)

, 1 ≤ j ≤ n.

Theorem 4.2.3. If ∼= is a congruence relation and x1, x2, . . . , xm, y1, y2, . . . , ym,

z1, z2, . . . , zn, u1, u2, . . . , un be disjoint components and be in U then following hold

(i) If f(
(m)

f(xm1 ))
∼= f(ym1 ) then f(x

m
1 )

∼= yi

for all 1 ≤ i ≤ m.

(ii) If g(
(n)

g(zn1 ))
∼= g(un1) then g(z

n
1 )

∼= uj

for all 1 ≤ j ≤ n.

Proof. (i) As

f(
(m)

f(xm1 ))
∼= f(ym1 )
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which is written as

f(f(xm1 ), . . . , f(x
m
1 )

︸ ︷︷ ︸

m

) ∼= f(ym1 ).

Thus,

y1 = y2 = . . . = ym ∼= f(xm1 )

Therefore, yi ∼= f(xm1 ).

(ii) Similar to (i).

Theorem 4.2.4. If xi ∼= yi, zj ∼= uj and x1, x2, . . . , xm, y1, y2, . . . , ym, z1, z2, . . . , zn,

u1, u2, . . . , un then

(i) for every 1 ≤ i ≤ m

f(
(m)

f(xm1 ))
∼= f(

(m)

f(ym1 ))

(ii) for every 1 ≤ j ≤ n

g(
(n)

g(zn1 ))
∼= g(

(n)

g(un1))

Proof. (i) As we know

f(xm1 )
∼= f(ym1 ) if xi

∼= yi for all 1 ≤ i ≤ m.

As f(am1 )
∼= f(bm1 ) is represented as

f(a1, a2, . . . , am) ∼= f(b1, b2, . . . , bm) (4.3)

if a1 = a2 = . . . = am = f(xm1 ) and b1 = b2 = . . . = bm = f(ym1 )
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Then, (4.3) can be written as

f(f(xm1 ), f(x
m
1 ), . . . , f(x

m
1 )

︸ ︷︷ ︸

m

) ∼= f(f(ym1 ), f(y
m
1 ), . . . , f(y

m
1 )

︸ ︷︷ ︸

m

)

which is represented as following

f(
(m)

f(xm1 ))
∼= f(

(m)

f(ym1 )

for all xm1 , y
m
1 ∈ U and 1 ≤ i ≤ m.

(ii) In similar manner we can prove

g(
(n)

g(zn1 ))
∼= g(

(n)

g(un1))

, where 1 ≤ j ≤ n.

Theorem 4.2.5. If xi ∼= yi, zj ∼= uj and x1, x2, . . . , xm, y1, y2, . . . , ym, z1, z2, . . . , zn,

u1, u2, . . . , un then we have

(i) for every 1 ≤ j ≤ n

f(
(m)

g(zn1 ))
∼= f(

(m)

g(un1))

(ii) for every 1 ≤ i ≤ m

g(
(n)

f(xm1 ))
∼= g(

(n)

f(ym1 ))

Proof. (i) As we know

g(zn1 )
∼= g(un1) if zj

∼= uj for all 1 ≤ j ≤ n.
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Let f(am1 )
∼= f(bm1 ) which is represented as

f(a1, a2, . . . , am) ∼= f(b1, b2, . . . , bm)

if a1 = a2 = . . . = am = g(zn1 ) and b1 = b2 = . . . = bm = g(un1). Then we get

the following result

f(g(zn1 ), g(z
n
1 ), . . . , g(z

n
1 )

︸ ︷︷ ︸

m

) ∼= f(g(un1), g(u
n
1), . . . , g(u

n
1)

︸ ︷︷ ︸

m

)

which is represented as follows

f(
(m)

g(zn1 ))
∼= f(

(m)

g(un1))

for all 1 ≤ i ≤ n.

(ii) In a similar manner we can prove

g(
(n)

f(xm1 ))
∼= g(

(n)

f(ym1 ))

,where 1 ≤ j ≤ m.

Lemma 4.2.6. If a ∼= b and xi ∼= yi, zj ∼= uj and a, b ∈ U then

(i)

f(xi−1
1 , a, xmi+1)

∼= f(yi−1
1 , b, ymi+1)

for all x1, x2, . . . , xm, y1, y2, . . . , ym ∈ U and 1 ≤ i ≤ m.

(ii)

g(zj−1
1 , a, znj+1)

∼= g(uj−1
1 , b, unj+1)
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for all z1, z2, . . . , zn, u1, u2, . . . , un ∈ U and 1 ≤ j ≤ n.

Proof. (i) From above Definition 4.2.1 of (m,n)-semiring congruence relation

f(xm1 )
∼= f(ym1 ) if xi

∼= yi for all 1 ≤ i ≤ m. Which is written as following

f(xi−1
1 , xi, x

m
i+1)

∼= f(yi−1
1 , yi, y

m
i+1) (4.4)

replace xi by a and yi by b in (4.4) as a ∼= b, to get

f(xi−1
1 , a, xmi+1)

∼= f(yi−1
1 , b, ymi+1)

for all a, b ∈ U and 1 ≤ i ≤ m.

(ii) From Definition 4.2.1 of (m,n)-semiring congruence relation

g(zn1 )
∼= g(un1) if zj

∼= uj for all 1 ≤ j ≤ n.

We write the equation as following

g(zj−1
1 , zj, z

n
j+1)

∼= g(uj−1
1 , uj, u

n
j+1) (4.5)

As a ∼= b , replace zj by a and uj by b in (4.5) to get the following result

g(zj−1
1 , a, znj+1)

∼= g(uj−1
1 , b, unj+1)

for all a, b ∈ U and 1 ≤ j ≤ n.

Lemma 4.2.7. If ∼= is a congruence relation and xi ∼= yi, zj ∼= uj ∀xi, yi, zj , uj ∈ U

then
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(i) f(
(i)

f(xm1 ), 0, . . . , 0︸ ︷︷ ︸

m−i

) ∼= f(
(i)

f(ym1 ), 0, . . . , 0︸ ︷︷ ︸

m−i

)

for all 1 ≤ i ≤ m.

(ii) g(
(j)

g(zn1 ), 1, . . . , 1︸ ︷︷ ︸

n−j

) ∼= g(
(j)

g(un1), 1, . . . , 1︸ ︷︷ ︸

n−j

)

for all 1 ≤ j ≤ n.

(iii) f(
(i)

g(zn1 ), 0, . . . , 0︸ ︷︷ ︸

m−i

) ∼= f(
(i)

g(un1), 0, . . . , 0︸ ︷︷ ︸

m−i

).

for all 1 ≤ i ≤ m.

(iv) g(
(j)

f(xm1 ), 1, . . . , 1︸ ︷︷ ︸

n−j

) ∼= g(
(j)

f(ym1 ), 1, . . . , 1︸ ︷︷ ︸

n−j

)

for all 1 ≤ j ≤ n.

Proof. (i) As

xi ∼= yi

for all 1 ≤ i ≤ n.

Then, from Definition 4.2.1

f(xm1 )
∼= f(ym1 ) (4.6)

by f operation on both sides of (4.6) with f(xm1 ), we get

f(f(xm1 ), f(x
m
1 ), 0, . . . , 0︸ ︷︷ ︸

m−2

) ∼= f(f(ym1 ), f(x
m
1 ), 0, . . . , 0︸ ︷︷ ︸

m−2

).
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which is written as follows

f(
(2)

f(xm1 ), 0, . . . , 0︸ ︷︷ ︸

m−2

) ∼= f(f(ym1 ), f(x
m
1 ), 0, . . . , 0︸ ︷︷ ︸

m−2

) (4.7)

by f operation on both sides of (4.6) with f(ym1 ), we get the following result

f(f(xm1 ), f(y
m
1 ), 0, . . . , 0︸ ︷︷ ︸

m−2

) ∼= f(f(ym1 ), f(y
m
1 ), 0, . . . , 0︸ ︷︷ ︸

m−2

).

Which can be written as following

f(f(xm1 ), f(y
m
1 ), 0, . . . , 0︸ ︷︷ ︸

m−2

) ∼= f(
(2)

f(ym1 ), 0, . . . , 0︸ ︷︷ ︸

m−2

) (4.8)

From (4.7) and (4.8), we get

f(
(2)

f(xm1 ), 0, . . . , 0︸ ︷︷ ︸

m−2

) ∼= f(
(2)

f(ym1 ), 0, . . . , 0︸ ︷︷ ︸

m−2

).

Similarly, we can find for i terms

f(
(i)

f(xm1 ), 0, . . . , 0︸ ︷︷ ︸

m−i

) ∼= f(
(i)

f(ym1 ), 0, . . . , 0︸ ︷︷ ︸

m−i

)

(ii) Similar to (i), with identity element 1 for g.

Theorem 4.2.8. If ∼= is a congruence relation and ai ∼= bi, cj ∼= dj,xt ∼= yt, zk ∼= uk

∀ai, bi, cj ,dj, xt, yt, zk ,uk ∈ U where 1 ≤ i ≤ m, 1 ≤ j ≤ n then

(i) f(
(t)

f(am1 ), x
m
t+1)

∼= f(
(t)

f(bm1 ), y
m
t+1)
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for all 1 ≤ t ≤ m

(ii) f(
(t)

g(cn1), x
m
t+1)

∼= f(
(t)

g(dn1), y
m
t+1)

for all 1 ≤ t ≤ m

(iii) g(
(k)

f(am1 ), z
n
k+1)

∼= g(
(k)

f(bm1 ), u
n
k+1)

for all 1 ≤ k ≤ n

(iv) g(
(k)

g(cn1), z
n
k+1)

∼= g(
(k)

g(dn1), u
n
k+1)

for all 1 ≤ k ≤ n

Proof. (i) From Lemma 4.2.7, if ai ∼= bi, ∀ai, bi ∈ U and 1 ≤ i ≤ m then

f(
(t)

f(am1 ), 0, . . . , 0︸ ︷︷ ︸

m−t

) ∼= f(
(t)

f(bm1 ), 0, . . . , 0︸ ︷︷ ︸

m−t

) (4.9)

for all 1 ≤ t ≤ m.

From Definition 4.2.1, if xt ∼= yt, for all 1 ≤ t ≤ m then

xt+1
∼= yt+1 (4.10)

by f operation on both sides of (4.9) with yt+1, we get

f(f(
(t)

f(am1 ), 0, . . . , 0︸ ︷︷ ︸

m−t

), yt+1, 0, . . . , 0
︸ ︷︷ ︸

m−2

)

∼= f(f(
(t)

f(bm1 ), 0, . . . , 0︸ ︷︷ ︸

m−t

), yt+1, 0, . . . , 0
︸ ︷︷ ︸

m−2

)

,
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f(
(t)

f(am1 ), yt+1, 0, . . . , 0
︸ ︷︷ ︸

m−t−1

) ∼= f(
(t)

f(bm1 ), yt+1, 0, . . . , 0
︸ ︷︷ ︸

m−t−1

) (4.11)

by f operation on both sides of (4.10) with f(
(t)

f(am1 ), 0, . . . , 0︸ ︷︷ ︸

m−t

), we get

f(f(
(t)

f(am1 ), 0, . . . , 0︸ ︷︷ ︸

m−t

), xt+1, 0, . . . , 0
︸ ︷︷ ︸

m−2

)

∼= f(f(
(t)

f(am1 ), 0, . . . , 0︸ ︷︷ ︸

m−t

), yt+1, 0, . . . , 0
︸ ︷︷ ︸

m−2

)

By Law of Associativity we get the following result

f(
(t)

f(am1 ), xt+1, 0, . . . , 0
︸ ︷︷ ︸

m−t−1

) ∼= f(
(t)

f(am1 ), yt+1, 0, . . . , 0
︸ ︷︷ ︸

m−t−1

) (4.12)

From (4.11) and (4.12), we get the following

f(
(t)

f(am1 ), xt+1, 0, . . . , 0
︸ ︷︷ ︸

m−t−1

) ∼= f(
(t)

f(bm1 ), yt+1, 0, . . . , 0
︸ ︷︷ ︸

m−t−1

).

Similarly, we can get the following

f(
(t)

f(am1 ), x
m
t+1)

∼= f(
(t)

f(bm1 ), y
m
t+1)

In a similar manner we can prove (ii) with identity element 0 and (iii) and

(iv) with identity element 1.
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Theorem 4.2.9. If ∼= is a congruence relation and ai ∼= bi, cj ∼= dj, xi ∼= yi, zj ∼= uj

for all ai, bi, cj, dj, xi, yi, zj, uj ∈ U for all 1 ≤ i ≤ m, 1 ≤ j ≤ n and t < m, k < n,

where t, k ∈ Z+ then

(i) f(
(t)

f(am1 ),
(m−t)

f(xm1 ))
∼= f(

(t)

f(bm1 ),
(m−t)

f(ym1 ))

for all 1 ≤ t ≤ m,

(ii) f(
(t)

g(cn1),
(m−t)

g(zn1 ))
∼= f(

(t)

g(dn1),
(m−t)

g(un1))

for all 1 ≤ t ≤ m,

(iii) g(
(k)

f(am1 ),
(n−k)

f(xm1 ))
∼= g(

(k)

f(bm1 ),
(n−k)

f(ym1 ))

for all 1 ≤ k ≤ n,

(iv) g(
(k)

g(cn1),
(n−k)

g(zn1 ))
∼= g(

(k)

g(dn1),
(n−k)

g(un1))

for all 1 ≤ k ≤ n.

Proof. (i) From Lemma 4.2.7, if ai ∼= bi ∀ai, bi ∈ U then

f(
(t)

f(am1 ), 0, . . . , 0︸ ︷︷ ︸

m−t

) ∼= f(
(t)

f(bm1 ), 0, . . . , 0︸ ︷︷ ︸

m−t

) (4.13)

for all 1 ≤ i ≤ m and 1 ≤ t ≤ m.

From Definition 4.2.1, if xi ∼= yi, for all 1 ≤ i ≤ m then

f(xm1 )
∼= f(ym1 ) (4.14)
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by f operation on both sides of (4.13) with f(ym1 ), we get

f(f(
(t)

f(am1 ), 0, . . . , 0︸ ︷︷ ︸

m−t

), f(ym1 ), 0, . . . , 0︸ ︷︷ ︸

m−2

)

∼= f(f(
(t)

f(bm1 ), 0, . . . , 0︸ ︷︷ ︸

m−t

), f(ym1 ), 0, . . . , 0︸ ︷︷ ︸

m−2

).

Which can be deduced as follows

f(
(t)

f(am1 ), f(y
m
1 ), 0, . . . , 0︸ ︷︷ ︸

m−t−1

) ∼= f(
(t)

f(bm1 ), f(y
m
1 ), 0, . . . , 0︸ ︷︷ ︸

m−t−1

) (4.15)

by f operation on both sides of (4.14) with f(
(t)

f(am1 ), 0, . . . , 0︸ ︷︷ ︸

m−t

), we get

f(f(xm1 ), f(
(t)

f(am1 ), 0, . . . , 0︸ ︷︷ ︸

m−t

), 0, . . . , 0
︸ ︷︷ ︸

m−2

)

∼= f(f(ym1 ), f(
(t)

f(am1 ), 0, . . . , 0︸ ︷︷ ︸

m−t

), 0, . . . , 0
︸ ︷︷ ︸

m−2

).

From above expression, we get the following result

f(f(xm1 ),
(t)

f(am1 ), 0, . . . , 0︸ ︷︷ ︸

m−t−1

) ∼= f(f(ym1 ),
(t)

f(am1 ), 0, . . . , 0︸ ︷︷ ︸

m−t−1

). (4.16)

From (4.15) and (4.16), we get the following

f(
(t)

f(am1 ), f(x
m
1 ), 0, . . . , 0︸ ︷︷ ︸

m−t−1

) ∼= f(
(t)

f(bm1 ), f(y
m
1 ), 0, . . . , 0︸ ︷︷ ︸

m−t−1

).
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Similarly, we can get the following

f(
(t)

f(am1 ),
(m−t)

f(xm1 ))
∼= f(

(t)

f(bm1 ),
(m−t)

f(ym1 )).

Similarly, we can prove for (ii) with identity element 0 and (iii) and (iv) with

identity element 1.
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