
High Availability Using Virtualization

Amartya Dasgupta Syed Eqbal Alam Arijit Mitra, Salone Gupta, Sneha Joseph, Shrisha Rao
IIIT - Bangalore Taif University IIIT - Bangalore
Bangalore, India Taif, Saudi Arabia Bangalore, India

Abstract
We describe the design of an inexpensive high avail-

ability solution that does not require the use of additional
hardware. This allows us to achieve complete fault toler-
ance on multiple servers including application servers as
well as DNS servers using virtualization. Our architecture
provides instant backup to the client at run-time with
minimal data loss by using hot-standby backup servers.
The arrangement uses multiple virtual servers connected to
a DNS terminal server acting as the controller. The system
can scale easily by connecting more secondary servers to
the terminal server. With this architecture, a backup virtual
server comes into action as soon as the primary server
goes down, and will continue the operations that the main
server was running, exactly from the point of failure, with
minimal loss of data.

I. Introduction

We describe a software system that provides system
level high availability with the help of virtual servers. Our
approach exploits the ability of virtualization to migrate
running virtual machines. It extends the technique to repli-
cate snapshots of an entire OS or partial instance between
primary and secondary servers. Using this technique, our
system provides minimal data loss while migrating from
primary to secondary server by starting execution of the
interrupted service from the point of failure.

By allowing multiple servers to be consolidated on
a smaller number of physical hosts using virtual servers,
it is easy to decrease the cost of the overall system setup.
But this benefit comes with a hidden cost in the form
of increased hardware failure. Our system architecture
provides an efficient solution to this problem by providing
high availability to the client using these virtual servers.
Also by using virtualization, the system is independent
of underlying hardware resources, thus making it easier
to transfer the virtual operating system from one physical
resource to another without hardware complications.

This system allows a host to execute speculatively
and then to checkpoint as well as replicate its state at a
very high speed.

1The work was done while the second author was a student at IIIT
Bangalore.

This architecture can be described in terms of the
following salient features:

• A “heartbeat” mechanism for health checking of ap-
plication servers. In case of a primary server failure,
the secondary server is promoted to act as the new
primary server (failover).

• Server mirroring, which efficiently helps in backing
up data in a faster and secure way.

• A terminal server which directs the client request
to a secondary server in case of a failure of the
primary server. It also minimizes the overhead on
the application servers. There is no separate program
running on the primary application server for the
heartbeat mechanism or server mirroring purposes.

Propagating the whole system state each time from
the primary to the secondary server is impractical as it
decreases the efficiency of the system as well as tak-
ing a huge amount of time and bandwidth to transfer
large amounts of data across the network. So we use
delta encoding [1] technique for mirroring of server data
which minimizes data transfer whenever possible. This
keeps the process running for the clients without any
discontinuity under an idealistic case; practically thereis
a very small processing delay time, which may cause a
small discontinuity experienced by the end users. This
system ensures that regardless of the moment at which
the primary fails, no externally visible state is ever lost.
In this architecture, the heartbeat mechanism is server
independent. It checks the heartbeat of the application
servers on an echo port, thus reducing the overhead on
the application servers, as no separate program has to be
initiated on them. The system is also very cost effective
as all the tools involved are open source tools. It does not
require any external hardware or specialized commercial
software for its implementation.

The advantages of the proposed system are as fol-
lows:

• Low overhead on primary servers as bulk of the
applications are distributed among terminal server
(Section III) and secondary servers.

• Heartbeat mechanism as explained in Section III
is independent of the application servers. As this
mechanism is being executed using an echo port, the
overhead on the application servers is low.

• For server mirroring, explained in Section III, the

257978-1-880843-83-3/ISCA CAINE/November 2011

open source tool rsync is used. This tool uses delta
encoding. In this technique, instead of the total
instance of data, only the minimal changed data
gets transferred, thus reducing the required time and
bandwidth for data transfer and making it faster and
maintaining the data integrity.

• The transfer of data is over a secured remote shell
SSH or RSH, which ensures the security of data.
The rest of the paper is as follows. Section II talks

about various works done in the past that are related to this
project. Section III describes the architecture and working
of our high availability framework and the scalability
issues. In Section IV, an evaluation of the system is
presented. Section VI concludes the paper.

II. Related Works

There has been a lot of work for the past few decades
to provide high availability in the presence of failures.
Zhiming, Xiaohua and Jichang et. al [2] have designed an
adaptive heartbeat fault detection model of dual controller,
which can adjust heartbeat cycle based on the frequency
of data read-write request that can improve the high
availability of dual-controller RAID storage system. In [3]
feasibility of deploying IP communications infrastructure
on virtualized platforms, with high-availability and relia-
bility is studied. Another approach of high availability is
in-memory replication [4] which is based on creating a
checkpoint of current state of the whole server and then
transferring it to another server. Socket level recovery [5]
is similar to the previous approach except that it uses an
application-level protocol which is built on both the client
system as well as the server system for the purpose of
client reconnection. Distributed object middleware [6], [7]
is basically implemented in distributed systems where all
the data from one server is sent to a middleware server
which acts as a backup server for the whole system. This
middleware server can be a single physical server or a
set of them. Another approach is transport-layer load bal-
ancing [8] which provides fault tolerance at the transport
layer level. In case of primary-backup systems [9], [10]
the way fault-tolerance is provided is as follows. The
state of the currently active server is replicated to one
or more backup servers. The client is connected to the
primary server. The backup servers check the health of
the primary server and in case of any failure, one of the
backup servers is promoted as the primary server. But in
this case, the backup servers have to run a health check
program continuously to sense the failure of the primary
server. This is a big overhead on the application servers.

Our approach is based on system level recovery.
Under this approach, the user remains unaware of any
event of failure, as the terminal server automatically
redirects the client to backup servers. As for example an

FTP client that restarts automatically in case of aborted
transfers. Other examples in this category are Samba [11]
and NFS clients [12] which have the ability to recover
from short connection failures transparently. But in case
of already-running applications, this approach is usually
not applicable. One of the approaches is to use socket-
level recovery [13], [14], where the lower layers provide
a reliable socket to reconnect the broken connection even
on failure. Some recent progress can be checked in the
area of high availability in the papers [15], [16], [17],
[18].

III. Design and Implementation

This section presents the design and implementation
of our prototype system. Figure 1 explains the basic
architectural design of the system. The figure is only
representative, because though the system is scalable and
multiple servers can be put into the server pool only two
servers are shown here for simplicity of understanding the
implementation technique. Later on, we will describe how
this can be used for multiple servers.

As per our model, the system has three or more
physical resources (machines) depending on the scale of
the implementation, where the terminal server is on one
physical resource and the array of application servers is
distributed over the remaining physical resources. Thus,
if one of the physical resources fails we still have backup
application servers on the other physical resource. This
retains high availability in case of hardware malfunction.
Since our application servers are virtual operating systems
(We have used VMWare as virtualization software) which
reside on the same physical resource, the transfer of data
between these servers is much faster as compared to data
transfer between two servers across the physical external
network. Thus, the system will have minimal data loss and
faster expected response times as compared to a system
with separate physical systems with no virtualization.

In Figure 1 we can see that there are three servers,
terminal, primary and secondary servers. Here the primary
and the secondary servers are virtual servers present on
multiple physical hosts. The terminal server can also be
implemented on separate physical host so as to retain high-
availability even on the occurence of hardware malfunc-
tion. A client machine connects to the terminal server
and in turn the terminal server directs the client to the
application servers. The total design implementation is
explained in some steps. The steps are being marked over
the arrows denoting the flow of the process.

Terminal Server Significance and function

The first step in Figure 1 illustrates how a terminal
server works. The terminal server is shown subdivided into

258

Fig. 1. Basic Architecture—Representative

two modules, one being the client-reconnection module
and the other being the heartbeat module. The terminal
server is connected to the primary and secondary servers.
When the client requests URL of our domain on his
browser, the terminal server will connect the client to one
of the primary servers during normal execution. In case
of failure it will promote a secondary server as primary
server and connect the client to that server instead.

Heartbeat and Client Reconnection

Significance of Heartbeat mechanism:Now in step 2 of
Figure 1, the heartbeat module comes into play. The
terminal server checks the health of the servers from the
server pool. For checking the health of the application
servers, i.e., checking which server is alive, the terminal
server pings the servers in the pool using an echo port. All
servers which are in an active state reply with an ack to
the terminal server. Step 3 in Figure 1 concerns the client
reconnection. During normal execution primary servers
and secondary servers are connected to the terminal server.
If the terminal server finds that a primary server is down,
then it will promote a secondary server as a new primary
server and start the execution from the point of failure.
Client reconnection significance:After getting back the
reply from a primary server, the terminal server directs
the client to this server, which in turn starts to execute the
client requests. At this point, all the other servers that are
alive but not taking part in any interaction with the client
become secondary servers. So we see that the terminal
server is responsible for connecting the client with the
primary server through this client reconnection technique.

Image Transfer or Server Mirroring

Now when the primary server is identified and has
already started working with the client, and issue that has
to be taken into account now is to take the backup of
the server data to make sure that no data is lost in case
of failure. So, in Figure 1 we see that the data transfer
module comes into the picture in step 4.

Significance of image transferring:The secondary
servers get the backup at regular intervals from the pri-
mary server. In our implementation, we use the open
source tool Rsync as mentioned earlier to transfer the
image. Rsync uses delta encoding to minimize the data
transfer between primary and secondary servers. Using
this technique, a primary server sends only that data which
is not present on the secondary server. This reduces the
amount of time as well as the network bandwidth required
for data transfer.

If a failure occurs in the primary server and it
stops working, then very shortly thereafter, the heartbeat
mechanism of the terminal server is able to check its
status. Since the primary server does not respond to the
pinging of the terminal server, the latter now promotes any
other server in the server pool which is alive in round-
robin order. In step 5, we see the terminal server doing
the same thing as done in step 2 to check which server
is alive on the wakeup of a failure. When it gets a reply
from a server, it then redirects the client to that server as
it has been doing in step 3.

Now the secondary server chosen by the terminal
server takes its position as the new primary server. Though
it is a new primary server, the client remains unaware
of this fact. The new primary server has the necessary
backups from the previous primary server by means of
the image transfers, and starts the job from the exact point
where the primary server has left off, with a nminimal loss
of data. This is the illustration of step 6.

We assume in Figure 1 that the server which went
down is now active but is not interacting with the client.
So this server will now act as a secondary server and will
get the backup from the primary server to maintain the
consistency and integrity of the data by making sure no
loss of data ever happens due to any failure. This is also
the illustration of step 7.

IV. Performance Analysis

This section discusses the feasibility and perfor-
mance of our implementation. We have tested our system
using two applications:

1) File download application
2) File upload application

Both applications leverage the high-availability char-
acteristics of the system. We compare our system perfor-

259

Data Transfer Time - Ours (in secs)
File Size No Fault 1 Fault 2 Faults

1Mb data 2.5 27.1 55.7

5Mb data 12.0 37.0 64.3

20Mb data 40.2 64.8 92.7

100Mb data 196.0 222.4 248.5

TABLE I
DOWNLOAD TIME WITH MAXIMUM OF TWO FAULTS

Data Transfer Time - Ours (in secs)
File Size No Fault 1 Fault 2 Faults

1Mb data 3.5 27.5 56.7

5Mb data 13.5 37.6 66.1

20Mb data 43.1 67.0 96.1

100Mb data 200.0 224.4 253.7

TABLE II
UPLOAD T IMES WITH MAXIMUM OF TWO FAULTS

mance with the performance data of Marwah, Mishra, and
Fetzer [19].

Download Application

In this application client downloads a data file from
the server. Initially the terminal server connects the client
to the primary server and start the file transfer. In the
background, Rsync is used to start sending chunks of
the data to the secondary servers. In case of failure,
the heartbeat module will promote one of the secondary
servers as a primary server and the client will be connected
to that server, but this process takes some amount of time
to actually shift from one server to another.

We have tested our system for various files without
fault as well as with multiple faults. A brief description
of the performance is given below in Table I.

Upload Application

In this application, a client uploads a data file to
the server. Initially, the terminal server connects the client
to the primary server and starts the file transfer. In the
background Rsync start sending chunks of the data to the
secondary servers. In case of failure, the heartbeat module
will promote one the secondary servers as a primary server
and the client will be connected to that server. We have
tested our system for various files without fault as well as
with multiple faults. In Table II a brief description of the
results have been shown.

Failover Time — Marwah et al. (in secs)
File Size One Fault

1Mb data 22.58

5Mb data 24.01

20Mb data 20.80

100Mb data 21.76

TABLE III
PERFORMANCEANALYSIS DATA FROM [19]

We have compared our performance analysis data
with the data available from [19]. The reason being, in
the referenced paper the size of data being experimented
is similar to our size of data. In Table III a description of
this external data is shown.

The comparison generates a graph similar to the
Figure 2.

Fig. 2. Performance analysis graph for uploading application and data
available from [19]

As per the comparison we can say that our system
has relatively small fluctuations in failover time, i.e., itis
closer to being constant and predictable. Also, our system
is not dependent on the size of the files being transferred
as is the case elsewhere [19]. The data collected by testing
also shows the efficiency of the system in case of multiple
failures because the failover time is almost constant during
the server failure. We can see as in Figure 2, that the
failover time period is about 5–15% higher as compared
to the available data from [19], mainly due to the DNS
IP redirection delay. This is unlikely to be significant in
practical systems, but can be reduced by utilizing high end
physical servers.

260

V. Scalability Issues

In the basic system of Figure 1, we have a single
point of failure in the form of the terminal server. To
overcome this problem we can introduce a backup for the
terminal server—a secondary terminal server. Since the
terminal server is a DNS server that reconnects the client
depending upon the heartbeat of the active application
server, the backup terminal server would do exactly the
same job as the primary DNS server. Both the terminal
servers work simultaneously with the application servers.
Whenever the primary terminal server fails, the backup
terminal server takes over the client reconnection oper-
ation, provided that the client or authoritative DNS has
the IP addresses of the primary and secondary terminal
servers. In other words, if the client fails to get a response
to the query made to the primary terminal server, then it
automatically tries again and queries the backup terminal
server, thus avoiding the single point of failure. The
advantage of this kind of setup is that there is no need
of a program so as to check whether the primary terminal
server is alive or not. The concept can of course also be
extended for multiple (more than two) terminal servers as
well.

In case of multiple active application servers the sys-
tem can be extended where a single load-balanced domain
or multiple application domain system, i.e., servers with
different applications or services can be established. Con-
sidering a load-balanced system in a single domain where
multiple application server represent the same service,
the server mirroring not only takes place on the backup
servers but also within the primary servers to mantain data
consistency. For the multiple application domain system,
where each active server supports a separate service, the
data from all the active servers will be stored in all the
backup servers such that any backup server can replace
any failed active server in a round robin fashion.

In our system, the backup servers can be added
seamlessly without affecting the ongoing system opera-
tions. Here the new backup server will get added to the
end of the list of the backup servers and will come into
play as per the round robin fashion.

VI. Conclusion

In this paper we have introduced a framework for
high availability using virtualization. The proposed solu-
tion keeps the failover time low as well as independent
of the size of the data transferred across the servers.
Thus the data loss is minimal. Currently the system has
been tested using multiple application servers with one
terminal server for a single client. It has also been tested
on client-server data uploading and downloading services
for bulk data transfers. It has provided near-zero data

loss achieving our minimal data loss as well as high
availability goals. As this system is efficient in utilizing
network bandwidth with a high rate of data transfer, we
have also shown how this system can scale to a large
number of servers. The experience is seamless to a client,
which make this platform viable for massive applications
also. The client needs an application that is capable of
automatically reconnecting to an application server upon
failure, and our system is then able to take care of the
rest.

References

[1] J. C. Mogul, F. Douglis, A. Feldmann, and B. Krishnamurthy,
“Potential benefits of delta encoding and data compression for
http,” SIGCOMM Comput. Commun. Rev., vol. 27, no. 4, pp. 181–
194, 1997.

[2] L. Zhiming, Y. Xiaohua, S. Jichang, and W. Yaping, “Faultdetec-
tion for high availability raid system,” inNetworked Computing
and Advanced Information Management (NCM), 2010 Sixth Inter-
national Conference on, pp. 27–32, aug. 2010.

[3] D. Patnaik, A. Bijlani, and V. Singh, “Towards high-availability
for ip telephony using virtual machines,” inInternet Multimedia
Services Architecture and Application(IMSAA), 2010 IEEE 4th
International Conference on, pp. 1–6, dec. 2010.

[4] A. Kantee, “Using application-driven checkpointing for hot spare
high availability,” in Proceedings of the 3rd EuroBSDCon, Oct.
2004.

[5] A. Cassen, “Processor allocation and checkpoint interval selection
in cluster computing systems,”Linux Virtual Server High Avail-
ability using VRRPv2 Linux Virtual Server OpenSource Project.

[6] C. S. Inc, “Management center for cisco security agents high
availability a white paper published,” Feb. 2009.

[7] A. Hirt, Microsoft SQL Server 2005 High Availability. Berkely,
CA, USA: Apress, 2007.

[8] A. Cassen, “Ipvs syncd strong authentication extensionlinux virtual
server opensource project,” Mar. 1998.

[9] N. Budhiraja and K. Marzullo, “Highly-available services using
the primary-backup approach,” inManagement of Replicated Data,
1992., Second Workshop, (Monterey, CA, USA), Nov 1992.

[10] H. Zou and F. Jahanian, “Real-time primary-backup (rtpb) repli-
cation with temporal consistency guarantees,” inICDCS ’98:
Proceedings of the The 18th International Conference on Dis-
tributed Computing Systems, (Washington, DC, USA), p. 48, IEEE
Computer Society, 1998.

[11] W. Fischer and C. Mitasch, “High availability clustering of virtual
machines -possibilities and pitfalls,” inPaper for the talk at the
12th Linuxtag, vol. Version 1.01, (Wiesbaden, Germany), pp. 97–
108, May 2006.

[12] V. S. Inc, “An introduction to system high availability, a white
paper,” 2009.

[13] A. C. Snoeren, D. G. Andersen, and H. Balakrishnan, “Fine-grained
failover using connection migration,” inUSITS’01: Proceedings
of the 3rd conference on USENIX Symposium on Internet Tech-
nologies and Systems, (Berkeley, CA, USA), pp. 19–19, USENIX
Association, 2001.

[14] F. Sultan, K. Srinivasan, and L. Iftode, “Transport layer support for
highly-available network services,” inHOTOS ’01: Proceedings
of the Eighth Workshop on Hot Topics in Operating Systems,
(Washington, DC, USA), p. 182, IEEE Computer Society, 2001.

[15] E. Bin, O. Biran, O. Boni, E. Hadad, E. Kolodner, Y. Moatti,
and D. Lorenz, “Guaranteeing high availability goals for virtual
machine placement,” inDistributed Computing Systems (ICDCS),
2011 31st International Conference on, pp. 700–709, june 2011.

[16] M. Handa and Z. Hui, “Construction of high-availability teach-
ing website,” inManagement and Service Science (MASS), 2010
International Conference on, pp. 1–4, aug. 2010.

261

[17] L. Perkov, N. Pavkovic, and J. Petrovic, “High-availability using
open source software,” inMIPRO, 2011 Proceedings of the 34th
International Convention, pp. 167–170, may 2011.

[18] R. Pinto, J. Rufino, and C. Almeida, “High availability in controller
area networks,” inEUROCON - International Conference on
Computer as a Tool (EUROCON), 2011 IEEE, pp. 1–4, april 2011.

[19] M. Marwah, S. Mishra, and C. Fetzer, “Tcp server fault tolerance
using connection migration to a backup server,” inThis paper
appears in the Proceedings of the International Conferenceon
Dependable Systems and Networks (DSN), 2003., (Los Alamitos,
CA, USA), IEEE Computer Society, 2003.

262

